
10 December 1980

JL*'-

****-
jM

MILITARY STANDARD

Ada PROGRAMMING LANGUAGE

MISC

a

#
I

PENALTY FOR PRIVATE USE $300 »

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 4966 WASHINGTON D. C.

POSTAGE WILL BE PAID BY THE DEFENSE LOGISTICS AGENCY

ADA JOINT PROGRAM OFFICE (AJPO)

OUSD (R&E)
WASHINGTON, DC 20301

*

FOLD

MIL-STD-1815

10 December 1980

MILITARY STANDARD

Ada PROGRAMMING LANGUAGE

MISC

MIL-STD-1815

DEPARTMENT OF DEFENSE

Washington, D. C. 20301

1. This Military Standard is approved for use by all Departments and Agencies of the

Department of Defense. Only compilers which have been certified by the Ada Compiler

Validation Facility (ACVF), shall be used in DoD systems.

2. Recommended corrections, additions or deletions should be addressed to: Ada
Joint Program Office (AJPO).OUSD (R&E), Washington, D.C. 20301.

MIL-STD-1815

10 December 1980

FOREWORD

This Military Standard describes the real-time programming language Ada, designed in accordance with the United

States Department of Defense requirements for use in embedded systems. Such applications typically involve real-

time constraints, fail-safe execution, control of non-standard input-output devices and management of concurrent

activities. Ada is intended as a common high order programming language and has the mechanisms for distributing

large libraries of application programs, packages, utilities and software development and maintenance tools. Machine

and operating system independence is therefore emphasized throughout its design.

The Ada Language is the result of a multinational industry, academic and government effort to design a common
high order language for programming embedded computer and real-time defense systems. This standard was
developed, coordinated and approved under the authority of DoDD 5000.29, Management of Computer Resources

in Major Defense Systems, and the DoD Management Steering Committee for Embedded Computer Resources.

It is the intent of this document, although not in MIL-STD format, to serve DoD’s immediate needs until a

voluntary standard has been adopted by consensus.

Ada is the result of a collective effort to design a common language for programming large scale and real-time

systems.

The common high order language program began in 1974. The DoD requirements were formalized in a series of

documents which were extensively reviewed by the Services, industrial organizations, universities, and foreign

military department. The culmination of that process was the Steelman Report to which the Ada language has

been designed.

The Ada design team was led by Jean D. Ichbiah and has included Bernd Krieg-Brueckner, Brian A. Wichmann,
Henry F. Ledgard, Jean-Claude Heliard, Jean-Raymond Abrial, John G. P. Barnes, Mike Woodger, Olivier Roubine,

Paul N. Hilfinger and Robert Firth.

At various stages of the project, several people closely associated with the design team made major contributions.

They include J.B. Goodenough, M.W. Davis, G. Ferran, L. MacLaren, E. Morel, I.R. Nassi, I.C. Pyle, S.A. Schuman,
and S.C. Vestal.

Two parallel efforts that were started in the second phase of this design has a deep influence on the language. One
is the development of a formal definition using denotational semantics, with the participation of V. Donzeau-Gouge,

G. Kahn and B. Lang. The other is the design of a test translator with the participation of K. Ripken, P. Boullier,

P. Cadiou, J. Holden, J. F. Hureras, R. G. Lange, and D. T. Cornhill. The entire effort benefitted from the dedicated

assistance of Lyn Churchill and Marion Myers, and the effective technical support of B. Gravem and W. L. Heimerding*

H. G. Schmitz served as program manager.

Over the three years spent on this project, five intense one-week design reviews were conducted with the participation

of H. Harte, A. L. Hisgen, P. Knueven, M. Kronental, G. Seegmueller, V. Stehning, F. Belz, P. Cohen, R. Converse,

K. Correll, R. Dewar, A. Evans, N. Habermann, J. Sammet, S. Squires, J. Teller, P. Wegner, and P. R. Wetherall,

Several persons has a constructive influence with their comments, criticisms, and suggestions. They include P. Brinch

Hansen, G. Goos, C. A. R. Hoare, Mark Rain, W. A. Wulf, P. Belmont, E. Boehert, P. Bonnard, R. Brender, B. Brosgol,

H. Clausen, M. Cox, T. Froggatt, H. Ganzinger, C. Hewitt, S. Kamin, J. L. Mansion, F. Minel, T. Phinney, J. Roehrich,

V. Schneider, A. Singer, D. Slosberg, I. C. Wand, the reviewers of the group Ada-Europe, and the reviewers of the

Tokyo study group assembled by N. Yoneda and K. Kakehi.

MIL-STD-1815

10 December 1980

These reviews and comments, the numerous evaluation reports received at the end of the first and second

phases, the more than nine hundred language issue reports, comments, and test and evaluation reports

received from fifteen different countries during the third phase of the project, and the on-going work of

the IFIP Working Group 2.4 on system implementation languages and that of LTPL-E of Purdue Europe

all had a substantial influence on the final definition of Ada.

The Military Departments and Agencies have provided a broad base of support including funding, extensive

reviews, and countless individual contributions by the members of the High Order Language Working Group
and other interested personnel. In particular, William A. Whitaker provided leadership for the program
during the formative stages. David A. Fisher was responsible for the successful development and iteration

of language requirements documents, leading to the Steelman specification.

This language definition was developed by Cii Honeywell Bull and Honeywell Systems and Research Center

under contract to the United States Department of Defense. William E. Carlson served as the technical

representative of the Government and effectively coordinated the efforts of all participants in the Ada
program.

This standard was originally published as “Reference Manual for the Ada Programming Language, July 1980.”

Between July 1980 and October 1980 approximately 80 minor typographical errors were identified.

Correction of these errors was authorized by the Interim Ada Configuration Control Board and the

standard was reprinted with corrections as “Reference Manual for the Ada Programming Language, July

1980 (Reprinted November 1980).”

The photo composition process which produced the masters for the November 1980 reprinting introduced

errors on seven pages (i, 3-12, 3-24, 4-2, 10-10, 14-6, C-3).

This MIL-STD has been prepared from the November 1980 masters with corrections made on the above

seven pages.

MIL-STD-1815

10 December 1980

MILITARY STANDARD

Copies of this standard required by contractors in connection with specific procurement
functions should be obtained from the procuring activity or as directed by the contracting
officer, from the DoD Single Stock Point, Commanding Officer, Naval Publications and
Forms Center, 5801 Tabor Avenue, Philadelphia, PA 19120.

Military Coordinating Activity

:

OUSD-SD

Preparing Activity:

Air Force - 02 *

(Project MISC-OD64)

Custodians:

Army - CR

Navy - NM

Air Force - 01

DCA-DC

NSA-NS

MIL-STD 1815

10 December 1980

Table of Contents

1. Introduction

1.1 Design Goals
1.2 Language Summary
1.3 Sources
1.4 Syntax Notation
1.5 Structure of the Reference Manual
1.6 Classification of Errors

Lexical Elements
2.1 Character Set
2.2 Lexical Units and Spacing Conventions
2.3 Identifiers

2.4 Numeric Literals

2.4.1 Based Numbers
2.5 Character Literals

2.6 Character Strings

2.7 Comments
2.8 Pragmas
2.9 Reserved Words
2.10 Transliteration

Declarations and Types
3.1 Declarations

3.2 Object and Number Declarations
3.3 Type and Subtype Declarations
3.4 Derived Type Definitions

3.5 Scalar Types
3.5.1 Enumeration Types
3.5.2 Character Types
3.5.3 Boolean Type
3.5.4 Integer types
3.5.5 Attributes of Discrete Types and Subtypes
3.5.6 Real Types
3.5.7 Floating Point Types
3.5.8 Attributes of Floating Point Types
3.5.9 Fixed Point Types
3.5.10 Attributes of Fixed Point Types
3.6 Array Types
3.6.1 Index Constraints and Discrete Ranges
3.6.2 Array Attributes

3.6.3 Strings

3.7 Record Types
3.7.1 Discriminants
3.7.2 Discriminant Constraints
3.7.3 Variant Parts

3.8 Access Types
3.9 Declarative Parts

1-1

1-2

1-4

1-5

1-6

1-6

2-1

2-2

2-2

2-3

2-4

2-4
2-5
2-5

2-6
2-6
2-7

3-1

3-2

3-4
3-6

3-8

3-9

3-10
3-10
3-10
3-12
3-13
3-13
3-15
3-16
3-18
3-18
3-20
3-22
3-23
3-23
3-25
3-26
3-28
3-29
3-31

MIL-STD-1815
10 December 1980

4. Names and Expressions

4.1 Names 4-1

4.1.1 Indexed Components 4-1

4.1.2 Slices 4-2

4.1.3 Selected Components 4-3

4.1.4 Attributes 4-5

4.2 Literals 4-5

4.3 Aggregates 4-6

4.3.1 Record Aggregates 4-7

4.3.2 Array Aggregates 4-7

4.4 Expressions 4-9

4.5 Operators and Expression Evaluation 4-10

4.5.1 Logical Operators and Short Circuit Control Forms 4-1

1

4.5.2 Relational and Membership Operators 4-12

4.5.3 Adding Operators 4-14

4.5.4 Unary Operators 4-15

4.5.5 Multiplying Operators 4-1 5

4.5.6 Exponentiating Operator 4-18

4.5.7 The Function ABS 4-18

4.5.8 Accuracy of Operations with Real Operands 4-19

4.6 Type Conversions 4-20

4.7 Qualified Expressions 4-21

4.8 Allocators 4-22

4.9 Static Expressions 4-24

4.10 Literal Expressions 4-25

5. Statements
5.1 Simple and Compound Statements - Sequences of Statements 5-1

5.2 Assignment Statement 5-2

5.2.1 Array Assignments 5-3

5.3 If Statements 5-4

5.4 Case Statements 5-5

5.5 Loop Statements 5-6

5.6 Blocks 5-7

5.7 Exit Statements 5-8

5.8 Return Statements 5-9

5.9 Goto Statements 5-9

6. Subprograms
6.1 Subprogram Declarations 6-1

6.2 Formal Parameters 6-3

6.3 Subprogram Bodies 6-4

6.4 Subprogram Calls 6-5

6.4.1 Actual Parameter Associations 6-6

6.4.2 Default Actual Parameters 6-7

6.5 Function Subprograms 6-8

6.6 Overloading of Subprograms 6-8

6.7 Overloading of Operators 6-9

ii

MIL-STD-1815

10 December 1980

7. Packages
7.1 Package Structure 7-1
7.2 Package Specifications and Declarations 7-2
7.3 Package Bodies 7-3
7.4 Private Type Definitions 7-4
7.4.1 Private Types 7-5
7.4.2 Limited Private Types 7-6
7.5 An Illustrative Table Management Package 7-8
7.6 Example of a Text Handling Package 7-9

8. Visibility Rules

8.1 Definitions of Terms 8-1
8.2 Scope of Declaration 8-2
8.3 Visibility of Identifiers and Declarations 8-3
8.4 Use Clauses 8-6
8.5 Renaming Declarations 8-9
8.6 Predefined Environment 8-10

9. Tasks
9.1 Task Specifications and Task Bodies 9-1
9.2 Task Objects and Task Types 9-3
9.3 Task Execution 9.4
9.4 Normal Termination of Tasks 9-5
9.5 Entries and Accept Statements 9-6
9.6 Delay Statements, Duration and Time 9-8
9.7 Select Statements g.g
9.7.1 Selective Wait Statements 9.9
9.7.2 Conditional Entry Calls 9. 11
9.7.3 Timed Entry Calls 9-12
9.8 Priorities 9-13
9.9 Task and Entry Attributes 9-14
9.10 Abort Statements 9-14
9.11 Shared Variables 9-15
9.12 Example of Tasking 9-16

10. Program Structure and Compilation Issues
10.1 Compilation Units - Library Units 10-1
10.1.1 With Clauses 10-3
10.1.2 Examples of Compilation Units. 10-4
10.2 Subunits of Compilation Units 10-6
10.2.1 Examples of Subunits 10-7
10.3 Order of Compilation 10-9
10.4 Program Library 10-10
10.5 Elaboration of Compilation Units 10-11
10.6 Program Optimization 10-11

11. Exceptions

11.1 Exception Declarations

11.2 Exception Handlers 11-2
11.3 Raise Statements 11-3
11.4 Dynamic Association of Handlers with Exceptions 11-4
1 1.4.1 Exceptions Raised During the Execution of Statements 11-4
11.4.2 Exceptions Raised During the Elaboration of Declarations 11-6

iii

MIL-STD-1815

10 December 1980

11.5 Exceptions Raised in Communicating Tasks

11.6 Raising the Exception Failure in Another Task

11.7 Suppressing Checks

11.8 Exceptions and Optimization

12. Generic Program Units

12.1 Generic Declarations

12.1.1 Parameter Declarations in Generic Parts

12.1.2 Generic Type Definitions

12.1.3 Generic Formal Subprograms
12.2 Generic Bodies

12.3 Generic Instantiation

12.3.1 Matching Rules For Formal Objects

12.3.2 Matching Rules for Formal Private Types

12.3.3 Matching Rules for Formal Scalar Types

12.3.4 Matching Rules for Formal Array Types

12.3.5 Matching Rules for Formal Access Types

12.3.6 Matching Rules for Formal Subprograms

12.3.7 Matching Rules for Actual Derived Types

12.4 Example of a Generic Package

13. Representation Specification and Implementation Dependent Features

13.1 Representation Specifications 13-1

13.2 Length Specifications 13-2

13.3 Enumeration Type Representations 13-4

13.4 Record Type Representations 13-5

13.5 Address Specifications 13-6

13.5.1 Interrupts 13-7

13.6 Change of Representations 13-8

13.7 Configuration and Machine Dependent Constants 13-9

13.7.1 Representation Attributes of Real Types 13-10

13.8 Machine Code Insertions 13-1

1

13.9 Interface to Other Languages 13-1

1

13.10 Unchecked Programming 13-12

13.10.1 Unchecked Storage Deallocation 13-12

13.10 Unchecked Type Conversions 13-13

Input-Output

14.1 General User Level Input-Output 14-1

14.1.1 Files 14-2

14.1.2 File Processing 14-4

14.2 Specification of the Package INPUT_OUTPUT 14-7

14.3 Text Input-Output 14-8

14.3.1 Default Input and Output Files 14-9

14.3.2 Layout 14-10

14.3.3 Input-Output of Characters and Strings 14-12

14.3.4 Input-Output for Other Types 14-14

14.3.5 Input-Output for Numeric Types 14-14

14.3.6 Input-Output for Boolean Type 14-17

14.3.7 Input-Output for Enumeration Types 14-18

14.4 Specification of the Package TEXT_IO 14-19

14.5 Example of Text Input-Output 14-23

14.6 Low Level Input-Output 14-24

11-7

11-8

1 1-8

11-10

12-1

12-3
12-3

12-4
12-5
12-6
12-7

12-8
12-8
12-9

12-10
12-10
12-1

1

12-12

IV

MIL-STD-1815

10 December 1980

Appendices

A. Predefined Language Attributes

B. Predefined Language Pragmas

C. Predefined Language Environment

D. Glossary

E. Syntax Summary

F. Implementation Dependent Characteristics

Index

MIL-STD-1815

10 December 1980

1 . Introduction

This report describes the programming language Ada, designed in accordance with the Steelman
requirements of the United States Department of Defense. Overall, the Steelman requirements

call for a language with considerable expressive power covering a wide application domain. As a

result the language includes facilities offered by classical languages such as Pascal as well as

facilities often found only in specialized languages. Thus the language is a modern algorithmic

language with the usual control structures, and the ability to define types and subprograms. It also

serves the need for modularity, whereby data, types, and subprograms can be packaged. It treats

modularity in the physical sense as well, with a facility to support separate compilation.

In addition to these aspects t language covers real time programming, with facilities to model
parallel tasks and to handle e> ptions. It also covers systems program applications. This requires

access to system dependent parameters and precise control over the representation of data. Final-

ly, both application level and machine level input-output are defined.

1.1 Design Goals

Ada was designed with three overriding concerns: a recognition of the importance of program
reliability and maintenance, a concern for programming as a human activity, and efficiency.

The need for languages that promote reliability and simplify maintenance is well established.

Hence emphasis was placed on program readability over ease of writing. For example, the rules of

the language require that program variables be explicitly declared and that their type be specified.

Since the type of a variable is invariant, compilers can ensure that operations on variables are com-
patible with the properties intended for objects of the type. Furthermore, error prone notations

have been avoided, and the syntax of the language avoids the use of encoded forms in favor of

more English-like constructs. Finally, the language offers support for separate compilation of

program units in a way that facilitates program development and maintenance, and which
provides the same degree of checking as within a unit.

Concern for the human programmer was also stressed during the design. Above all, an attempt

was made to keep the language as small as possible, given the ambitious nature of the application

domain. We have attempted to cover this domain with a small number of underlying concepts

integrated in a consistent and systematic way. Nevertheless we have tried to avoid the pitfalls of

excessive involution, and in the constant search for simpler designs we have tried to provide

language constructs with an intuitive mapping on what the user will normally expect.

Like many other human activities, the development of programs is becoming more and more
decentralized and distributed. Consequently the ability to assemble a program from independently

produced software components has been a central idea in this design. The concepts of packages,

of private types, and of generic program units are directly related to this idea, which has ramifica-

tions in many other aspects of the language.

1 - 1

MIL-STD-1815

10 December 1980
Ada Reference Manual

No language can avoid the problem of efficiency. Languages that require overly elaborate com-
pilers or that lead to the inefficient use of storage or execution time force these inefficiencies on all

machines and on all programs. Every construct of the language was examined in the light of pre-

sent implementation techniques. Any proposed construct whose implementation was unclear or

required excessive machine resources was rejected.

Perhaps most importantly, none of the above goals was considered something that could be
achieved after the fact. The design goals drove the entire design process from the beginning.

1.2 Language Summary

An Ada program is composed of one or more program units, which can be compiled separately.

Program units may be subprograms (which define executable algorithms), packages (which define

collections of entities), or tasks (which define concurrent computations). Each unit normally con-
sists of two parts: a specification, containing the information that must be visible to other units,

and a body, containing the implementation details, which need not be visible to other units.

This distinction of the specification and body, and the ability to compile units separately allow a

program to be designed, written, and tested as a set of largely independent software components.

An Ada program will normally make use of a library of program units of general utility. The
language provides means whereby individual organizations can construct their own libraries. To
allow accurate control of program maintenance, the text of a separately compiled program unit

must name the library units it requires.

Program units.

A subprogram is the basic unit for expressing an algorithm. There are two kinds of subprograms:
procedures and functions. A procedure is the logical counterpart to a series of actions. For exam-
ple, it may read in data, update variables, or produce some output. It may have parameters, to

provide a controlled means of passing information between the procedure and the point of call. A
function is the logical counterpart to the computation of a value. It is similar to a procedure, but in

addition will return a result.

A package is the basic unit for defining a collection of logically related entities. For example, a

package can be used to define a common pool of data and types, a collection of related sub-
programs, or a set of type declarations and associated operations. Portions of a package can be
hidden from the user, thus allowing access only to the logical properties expressed by the package
specification.

A task is the basic unit for defining a sequence of actions that may be executed in parallel with
other similar units. Parallel tasks may be implemented on multicomputers, multiprocessors, or with
interleaved execution on a single processor. A task unit may define either a single executing task

object or a task type defining similar task objects.

Declarations and Statements

The body of a program unit generally contains two parts: a declarative part, which defines the

logical entities to be used in the program unit, and a sequence of statements, which defines the

execution of the program unit.

1 - 2

Introduction
MIL-STD-1815

10 December 1980

The declarative part associates names with declared entities. For example, a name may denote a

type, a constant, a variable, or an exception. A declarative part also introduces the names and
parameters of other nested subprograms, packages, and tasks to be used in the program unit.

The sequence of statements describes a sequence of actions that are to be performed. The state-

ments are executed in succession (unless an exit, return, or goto statement, or the raising of an

exception causes execution to continue from another place).

An assignment statement changes the value of a variable. A procedure call invokes execution of a

procedure after associating any arguments provided at the call with the corresponding formal

parameters of the subprogram.

Case statements and if statements allow the selection of an enclosed sequence of statements

based on the value of an expression or on the value of a condition.

The basic iterative mechanism in the language is the loop statement. A loop statement specifies

that a sequence of statements is to be executed repeatedly until an iteration clause is completed or

an exit statement is encountered.

A block comprises a sequence of statements preceded by the declaration of local entities used by

the statements.

Certain statements are only applicable to tasks. A delay statement delays the execution of a task

for a specified duration. An entry call is written as a procedure call; it specifies that the task issu-

ing the call is ready for a rendezvous with another task that has this entry. The called task is ready

to accept the entry call when its execution reaches a corresponding accept statement, which
specifies the actions then to be performed. After completion of the rendezvous, both the calling

task and the task having the entry may continue their execution in parallel. A select statement
allows a selective wait for one of several alternative rendezvous. Other forms of the select state-

ment allow conditional or timed entry calls.

Execution of a program unit may lead to exceptional situations in which normal program execution

cannot continue. For example, an arithmetic computation may exceed the maximum allowed

value of a number, or an attempt may be made to access an array component by using an incorrect

index value. To deal with these situations, the statements of a program unit can be textually fol-

lowed by exception handlers describing the actions to be taken when the exceptional situation

arises. Exceptions can be raised explicitly by a raise statement.

Data Types

Every object in the language has a type which characterizes a set of values and a set of applicable

operations. There are four classes of types: scalar types (comprising enumeration and numeric
types), composite types, access types, and private types.

An enumeration type defines an ordered set of distinct enumeration literals, for example a list of

states or an alphabet of characters. The enumeration types BOOLEAN and CHARACTER are

predefined.

Numeric types provide a means of performing exact or approximate computations. Exact com-
putations use integer types, which denote sets of consecutive integers. Approximate computations

use either fixed point types, with absolute bound on the error, or floating point types, with relative

bound on the error. The numeric types INTEGER and DURATION are predefined.

1 - 3

MIL-STD-1815

10 December 1980
Ada Reference Manual

Composite types allow definitions of structured objects with related components. The composite
types in the language provide for arrays and records. An array is an object with indexed compo-
nents of the same type. A record is an object with named components of possibly different types.

A record may have distinguished components called discriminants. Alternative record structures
that depend on the values of discriminants can be defined within a record type.

Access types allow the construction of linked data structures created by the execution of
allocators. They allow several variables of an access type to designate the same object, and com-
ponents of one object to designate the same or other objects. Both the elements in such a linked

data structure and their relation to other elements can be altered during program execution.

Private types can be defined in a package that conceals irrelevant structural details. Only the
logically necessary properties (including any discriminants) are made visible to the users of such
types.

The concept of a type is refined by the concept of a subtype, whereby a user can constrain the set
of allowed values in a type. Subtypes can be used to define subranges of scalar types, arrays with
a limited set of index values, and records and private types with particular discriminant values.

Other Facilities

Representation specifications can be used to specify the mapping between data types and features
of an underlying machine. For example, the user can specify that objects of a given type must be
represented with a specified number of bits, or that the components of a record are to be
represented in a specified storage layout. Other features allow the controlled use of low level, non
portable, or implementation dependent aspects, including the direct insertion of machine code.

Input-output is defined in the language by means of predefined library packages. Facilities are

provided for input-output of values of user-defined as well as of predefined types. Standard means
of representing values in display form are also provided.

Finally the language provides a powerful means of parameterization of program units, called

generic program units. The generic parameters can be types and subprograms (as well as objects)
and so allow general algorithms to be applied to all types of a given class.

1 .3 Sources

A continual difficulty in language design is that one must both identify the capabilities required by
the application domain and design language features that provide these capabilities.

The difficulty existed in this design, although to a much lesser degree than usual because of the

Steelman requirements. These requirements often simplified the design process by permitting us
to concentrate on the design of a given system satisfying a well defined set of capabilities, rather

than on the definition of the capabilities themselves.

1 - 4

Introduction MIL-STD-1815

10 December 1980

Another significant simplification of our design work resulted from earlier experience acquired by

several successful Pascal derivatives developed with similar goals. These are the languages

Euclid, Lis, Mesa, Modula, and Sue. Many of the key ideas and syntactic forms developed in these

languages have a counterpart in Ada. We may say that whereas these previous designs could be

considered as genuine research efforts, the language Ada is the result of a project in language

design engineering, in an attempt to develop a product that represents the current state of the art.

Several existing languages such as Algol 68 and Simula and also recent research languages such

as Alphard and Clu, influenced this language in several respects, although to a lesser degree than

the Pascal family.

Finally, the evaluation reports received on the initial formulation of the Green language, the Red,

Blue and Yellow language proposals, the language reviews that took place at different stages of

this project, and the more than nine hundred reports received from fifteen different countries on

the preliminary definition of Ada, all had a significant impact on the final definition of the language.

1 .4 Syntax Notation

The context-free syntax of the language is described using a simple variant of Backus-Naur Form.
In particular,

(a) Lower case words, some containing embedded underscores, denote syntactic categories, for

example

adding_operator

(b) Boldface words denote reserved words, for example

array

(c) Square brackets enclose optional items, for example

end [identifier];

(d) Braces enclose a repeated item. The item may appear zero or more times. Thus an identifier

list is defined by

identifierjist ::= identifier (, identifier)

(e) A vertical bar separates alternative items, unless it occurs immediately after an opening brace,

in which case it stands for itself:

letter_or_digit letter
|

digit

component_association ::= [choice (| choice) =>] expression

(f) Any syntactic category prefixed by an italicized word and an underscore is equivalent to the

unprefixed corresponding category name. The prefix is intended to convey some semantic
information. For example fy/oe_name and fas£_name are both equivalent to the category
name.

1 - 5

MIL-STD-1815
10 December 1980

Ada Reference Manual

In addition, the syntax rules describing structured constructs are presented in a form that corres-

ponds to the recommended paragraphing. For example, an if statement is defined as

if_statement ::=

if condition then
seqUence_of_statements

I elsif condition then

sequence_of_statements}

[else

sequence_of_statements]

end if;

1.5 Structure of the Reference Manual

This reference manual contains fourteen chapters, six appendices and an index. Each chapter is

divided into sections that have a common structure. Each section introduces its subject, gives any
necessary syntax equations, and describes the semantics of the corresponding language con-

structs. Examples, notes, and references, when present, follow in this order.

Examples are meant to illustrate the possible forms of the constructs described. Notes are to

emphasize consequences of the rules described in the section or elsewhere. References refer to

related sections. Neither examples, nor notes, nor references are part of the standard definition of

the Ada language. In addition the appendices D (glossary), F (Implementation dependent
characteristics), and any section whose title starts by "example" do not form part of the standard

definition.

1.6 Classification of Errors

The language recognizes three categories of errors.

(1) Errors that must be detected at compilation time by every Ada compiler. These errors corres-

pond to any violation of a rule of the language, other than those corresponding to (2) or (3)

below. Any rule that uses the terms legal, allowed, must, or may only belongs to this category.

(2) Errors that must be detected at run time. These are called exceptions. In certain situations

compilers may give warning during compilation that an exception is certain to occur in every

execution of the program.

(3) Finally the language specifies certain rules that must be obeyed by Ada programs, although

Ada compilers are not required to check that such rules are not violated. For any error belong-

ing to this category, the reference manual uses the word erroneous to qualify the cor-

responding programs. If an erroneous program is executed, its effect is unpredictable.

1 - 6

MIL-STD-1815

10 December 1980

2. Lexical Elements

This chapter defines the lexical elements of the language.

2.1 Character Set

All language constructs may be represented with a basic graphic character set, which is subdivided

as follows:

(a) upper case letters

ABCDEFGHIJKLMNOPQRSTUVWXYZ
(b) digits

0123456789
(c) special characters

”#%&'{)* + , |

(d) the space character

The character set may be extended to include further characters from the 95 character ASCII
graphics set. These are:

(e) lower case letters

abcdefghijklmnopqrstuvwxyz

(f) other special characters

! $? @ [\]

“
'

{ I
~

Every program may be converted into an equivalent program which uses only the basic character

set. Any lower case letter is equivalent to the corresponding upper case letter, except within

character strings and character literals; rules for the transliteration of strings into the basic

character set appear in section 2.10.

References-.

ascii package C, character literal 2.5, character string 2.6, transliteration 2.10.

2 - 1

MIL-STD-1815

10 December 1980 Ada Reference Manual

2.2 Lexical Units and Spacing Conventions

A program is a sequence of lexical units; the partitioning of the sequence into lines and the spacing
between lexical units does not affect the meaning of the program. The lexical units are identifiers

(including reserved words), numeric literals, character literals, strings, delimiters and comments. A
delimiter is either one of the following special characters in the basic character set

&'()*+,-./:;< = > |

or one of the following compound symbols

=> - ** := /= >= <= << >> <>

Adjacent lexical units may be separated by spaces or by passage to a new line. An identifier or
numeric literal must be separated in this way from an adjacent identifier or numeric literal. Spaces
must not occur within lexical units, excepting strings, comments, and the space character literal.

Each lexical unit must fit on one line.

Control characters of the ASCII set are used to effect this layout.

Any of carriage return, line feed, vertical tabulate, form feed, and only these, causes passage to a
new line. Horizontal tabulate is allowed in comments. Otherwise no control character may occur
within a lexical unit. Between lexical units horizontal tabulate is equivalent to a space, backspace
is not allowed, and delete and null characters are ignored.

Note:

The number of lines produced by combinations of control characters is not prescribed. Thus car-

riage return terminates a lexical unit, whether or not a line feed follows it. Note that the double
quote, double hyphen, and sharp sign are not delimiters; they are part of other lexical units.

References:

ascii package C, character literal 2.5, comment 2.7, identifier 2.3, numeric literal 2.4, reserved word 2.9,

string 2.6

2.3 identifiers

Identifiers are used as names (also as reserved words). Isolated underscore characters may be
included. All characters, including underscores, are significant.

identifier ::=

letter ([underscore] letter_or_digitj

letter_or_digit ::= letter
|

digit

letter ::= upper_case_letter
(
lower_case_letter

Note that identifiers differing only in the use of corresponding upper and lower case letters are

considered as the same.

2 - 2

Lexical Elements MIL-STD-1815

10 December 1980

Examples :

COUNT X get_symbol Ethelyn Marion

SNOBOI 4 XI PageCount STORE_NEXT_ITEM

References'.

lower case letter 2.1, name 4.1, upper case letter 2.1

2.4 Numeric Literals

There are two classes of numeric literals: integer literals and real literals. Integer literals are the

literals of the type universaljnteger. Real literals are the literals of the type universaljeal.

numeric-literal ::= decimal-number
|
based_number

decimal-number ::= integer [.integer] [exponent]

integer digit [[underscore] digit)

exponent ::= E [+] integer
|
E - integer

Isolated underscore characters may be inserted between adjacent digits of a decimal number, but
are not significant.

The conventional decimal notation is used. Real literals are distinguished by the presence of a

decimal point. An exponent indicates the power of ten by which the preceding number is to be
multiplied to obtain the value represented. An integer literal can have an exponent; the exponent
must be positive or zero.

Examples'.

12 0 123-456 1 E6 -- integer literals

12.0 0.0 0.456 3.14159-26 - real literals

1.34E-12 1.0E+6 -- real literals with exponent

Note-.

The exponent may be indicated by either an upper case E or a lower case e (see 2.1).

References'.

universal-integer type 3.5.4, universal-real type 3.5.6

2 - 3

MIL-STD-1815

10 December 1980

Ada Reference Manual

2.4.1 Based Numbers

Numbers may be represented with a base other than ten. Based numbers can have any base from

2 to 16.

based_number ::=

base # basedJnteger [.based_integer] # [exponent]

base ::= integer

basedJnteger ::=

extended_digit [[underscore] extended_digit]

extended_digit digit
|

letter

Isolated underscore characters may be inserted between adjacent extended digits of a based

number, but are not significant. An exponent indicates the power of the base by which the

preceding number is to be multiplied to obtain the value represented. The base and the exponent

are in decimal notation. For bases above ten, the extended digits include the letters A through F,

with the conventional significance 10 through 15.

Examples'.

2#1111_1111# 16#FF# -- integer literals of value 255
16^E^E1 2#1110_0000# -- integer literals of value 224
16#F.FF#E+2 2#1.1 1 1 1_1 1 1 1_1 1 1#E1 1 -- real literals of value 4095.0

Note'.

An extended digit that is a letter can be written either in lower case or in upper case.

2.5 Character Literals

A character literal is formed by enclosing one of the 95 ASCII graphic characters (including the

space) between single quote characters.

Examples'.

A'

References'.

ascii package C, character 2.1

2 - 4

Lexical Elements

MIL-STD-1815

10 December 1980

2.6 Character Strings

A character string is a sequence of zero or more characters prefixed and terminated by the string

bracket character.

character_string ::= "(character}"

In order that arbitrary strings of characters may be represented, any included string bracket

character must be written twice. The length of a string is the length of the sequence represented.

Catenation must be used to represent strings longer than one line, and strings containing control

characters.

Examples:

"" — an empty string

A -- three strings of length 1

"characters such as $, % and } may appear in strings"

"FIRST PART OF A STRING THAT " &
"CONTINUES ON THE NEXT LINE"

"String containing" & ASCII.CR & ASCII. LF & "Control characters"

References'.

catenation 3.6.3 4.5.3, character 2.1

2.7 Comments

A comment starts with two hyphens and is terminated by the end of the line. It may only appear

following a lexical unit or at the beginning or end of a program unit. Comments have no effect on

the meaning of a program; their sole purpose is the enlightenment of the human reader.

Examples:

— the last sentence above echoes the Algol 68 report

end; — processing of LINE is complete

a long comment may be split onto

two or more consecutive lines

the first two hyphens start the comment

References :

lexical unit 2.2, program unit 6 7 9

2 - 5

MIL-STD-1815
10 December 1980 Ada Reference Manual

2.8 Pragmas

Pragmas are used to convey information to the compiler. A pragma begins with the reserved word
pragma followed by the name of the pragma, which distinguishes it from other pragmas.

pragma ::=

pragma identifier [(argument {, argument})];

argument ;:=

[identifier =>] name
|

[identifier =>] sfaf/cexpression

Pragmas may appear before a program unit, or wherever a declaration or a statement may appear,
depending on the pragma. Some pragmas have arguments, which may involve identifiers visible at

the place of the pragma. The extent of the effect of a pragma depends on the pragma.

A pragma may be language defined or implementation defined. All language defined pragmas are
described in Appendix B. All implementation defined pragmas must be described in Appendix F. A
pragma whose identifier is not recognized by the compiler has no effect.

Examples:

pragma LIST(OFF);

pragma OPTIMIZE(TIME);
pragma I NCLUDE(''COM MONTEXT");
pragma INLINE(SETMASK);
pragma SUPPRESS(RANGE_CHECK, ON => INDEX);

References :

declaration 3.1, implementation defined pragma F, language defined pragma B, program unit 6 7 9,

reserved word 2.9, statement 5, static expression 4.9, visibility rules 8

2.9 Reserved Words

The identifiers listed below are called reserved words and are reserved for special significance in

the language. Declared identifiers may not be reserved words. For readability of this manual, the
reserved words appear in lower case boldface.

2 - 6

Lexical Elements
MIL-STD-1815

10 December 1980

abort declare generic of select

accept delay goto or separate
access delta others subtype
all digits if out
and do in task
array is package terminate
at pragma than

else private type

elsif limited procedure
end loop

begin entry raise use
body exception rang©

exit mod record when
rem while

new renames with
case for not return

constant function null reverse xor

2.10 Transliteration

A character string may contain characters not in the basic character set. A string containing such
characters can be converted to a string written with the basic character set by using identifiers
denoting these characters in catenated strings. Such identifiers are defined in the predefined
package ASCII. Thus the string "AB$CD" could be written as "AB" & ASCII.DOLLAR & "CD".
Similarly, the string "ABcd" with lower case letters could be written as "AB" & ASCII LC_C &
ASCII. LC_D.

The following replacements are allowed for characters that may not be available:

• the vertical bar character |, which appears on some terminals as a broken bar, may be replaced
by the exclamation mark I as a delimiter.

@ the sharp character # may be replaced by the colon : throughout any based number.

© the double quote character " used as string bracket may be replaced by a percent character %
at both ends of a string, provided that the string contains no double quote character. Any per-
cent character within the string must then be written twice. A string which contains a double
quote character can be represented using catenation and a name for that character.

Note

:

The preferred character set is the one employed in the rest of this manual. It is recommended that
use of these replacements be restricted to cases where the characters replaced are not available.

References'.

ascii package C, based number 2.4.1, basic character set 2.1, character string 2.6, choice 3.7.3, identifier
2.3

2 - 7

>

MIL-STD-1815

10 December 1980

3. Declarations and Types

This chapter describes the types in the language and the rules for declaring constants, variables,

and named numbers.

3.1 Declarations

The language defines several forms of named entities. A named entity can be either a number, an
enumeration literal, an object, a discriminant, a record component, a loop parameter, a type, a sub-
type, an attribute, a subprogram, a package, a task, an entry, a named block, a named loop, a

labeled statement, an exception, or finally, a parameter of a subprogram, of an entry, or of a

generic subprogram or package.

A declaration associates an identifier with a declared entity. Each identifier must be explicitly

declared before it is used, excepting only labels, block identifiers, and loop identifiers; these are

declared implicitly. There are several forms of declarations.

declaration ::=

object_declaration

|
type_declaration

|
subprogram_declaration

|
task_declaration

|
renaming_declaration

|
number_declaration

j
subtype_declaration

I
package_declaration

I
exception_declaration

A declaration may declare one or more entities. Discriminant declarations, component declara-

tions, entry declarations, and parameter declarations occur as part of one of the above forms of

declarations. Enumeration literals are declared by an enumeration type definition. A loop
parameter is declared by an iteration clause. Attributes are predefined and cannot be declared.

The process by which a declaration achieves its effect is called the elaboration of the declaration.

This process generally involves several successive actions:

• First, the identifier of a declared entity is introduced at the point of its first occurrence; it may
hide other previously declared identifiers from then on (the rules defining visibility and hiding

of identifiers are given in section 8.3).

• The second action is the elaboration of the declared entity. For all forms of declarations,

except those of subprograms, packages, and tasks, an identifier can only be used as a name of

a declared entity once the elaboration of the entity is completed. A subprogram, package, or

task identifier can be used as a name of the corresponding entity as soon as the identifier is

introduced, hence even within the declaration of the entity.

• The last action performed by the elaboration of an object declaration may be the initialization

of the declared object (or objects).

3 - 1

MIL-STD-1815
10 December 1980

Ada Reference Manual

The region of text over which the declaration has an effect is called the scope of the declaration;

this region always starts at the point where the declared identifier is introduced (scope rules are

defined in section 8.2).

Object, number, type, and subtype declarations are described here. The remaining declarations are

described in later chapters.

Notes:

The rules defining the elaboration of the different forms of declarations are such that an expression

appearing in a declaration is evaluated when the declaration is elaborated, except for certain

expressions given in generic parts and which depend on generic parameters. This rule applies to

any expression contained in a subprogram declaration but not to an expression contained in a sub-

program body (since a body is not a declaration).

The term elaboration also applies to use clauses, with clauses, representation specifications, and
to bodies (see section 3.9).

References:

block identifier 5.6, component declaration 3.7, discriminant declaration 3.7.1, elaboration 3.9, enumera-
tion literal 3.5.1, exception declaration 1 1.1, expression 4.4, generic package declaration 12.1, generic sub-

program declaration 12.1, hide 8.3, identifier 2.3, label 5.1, loop identifier 5.5, loop parameter 5.5, name
4.1, number declaration 3.2, object declaration 3.2, package declaration 7.1, parameter declaration 6.1

12.1, renaming declaration 8.5, scope 8.2, subprogram body 6.3, subprogram declaration 6.1, subtype

declaration 3.3, task declaration 9.1, type declaration 3.3, visibility rules 8.3

3.2 Object and Number Declarations

An object is an entity that contains (has) a value of a given type. Objects can be introduced by

object declarations. Objects can also be components of other objects, or formal parameters of

subprograms and generic program units. Finally, an object can be designated by a value of an

access type.

object_declaration ::=

identifierjist : [constant] subtype_indication [:= expression];

|
identifierjist : [constant] array_type_definition [:= expression];

number_declaration

identifierjist : constant := //Yera/_expression;

identifierjist ::= identifier (, identifier)

An object declaration introduces one or more named objects of a type given either by a subtype

indication, or by a constrained array type definition. An object declaration may include an expres-

sion specifying the initial value for the declared objects, provided that assignment is available for

the type of the declared objects.

3 - 2

Declarations and Types MIL-STD-1815
10 December 1980

The elaboration of an object declaration consists of the elaboration of the declared objects,
followed by their explicit initialization, if any:

(a) For the elaboration of the declared objects, the identifiers of the list are first introduced; the
type is then established by elaborating the corresponding array type definition or by
evaluating any constraint in the subtype indication; objects of this type and named by the
identifiers are then created; these objects are subject to any constraint resulting from either
the subtype indication or the constrained array type definition. Finally, in the absence of an
explicit initialization, if a default initial value exists for objects of the type or for some of their

components, the corresponding default initializations are performed. In particular, for objects
of types with discriminants, the default discriminant values are assigned to the corresponding
discriminants unless the objects are constrained, in which case the discriminant values
specified by the constraints are assigned.

(b) If an explicit initialization is specified in an object declaration, the corresponding expression is

then evaluated and its value is assigned to each of the declared objects. This value must
satisfy any constraint on the objects as for assignment statements. An explicit initialization

overrides a default initialization (but of course an explicit initialization cannot modify a dis-

criminant value of an object with a discriminant constraint).

An object is a constant if the reserved word constant appears in the object declaration or if it is a

component of a constant array or of a constant record. The initial value of a constant cannot be
modified; this value must be given in the constant declaration except in the case of a deferred con-
stant (that is, a constant declared in the visible part of a package and whose type is a private type
declared in the same visible part, as explained in section 7.4).

Objects that are not constant are called variables. The value of a variable is undefined after

elaboration of the corresponding object declaration unless either the latter contains an explicit

initialization, or a default initial value exists for objects of the type. A program whose result
depends upon an undefined value is erroneous.

A number declaration introduces one or more identifiers naming a number defined by a literal

expression, which involves only numeric literals, names of numeric literals, calls of the predefined
function ABS, parenthesized literal expressions, and the predefined arithmetic operators (see sec-
tion 4.10 for literal expression). A named number is of the type universal integer if every numeric
literal (or name of a numeric literal) contained in the literal expression is of this type; otherwise it is

of the type universal real.

Elaboration of an object declaration with either an explicit or a default initialization raises the
exception CONSTRAINT_ERROR if the initial value fails to satisfy some constraint on the object.

Examples of variable declarations :

COUNT, SUM
SORTED
COLOR_TABLE
OPTION

INTEGER;
BOOLEAN := FALSE;
array (1 .. N) of COLOR;
BIT_VECT0R(1 .. 10) := (OPTION'RANGE => TRUE);

Examples of constant declarations :

LIMIT
LOW._LIMIT
TOLERANCE
NULI KEY

constant INTEGER := 10_000;
constant INTEGER := LIMIT / 10;

constant COEFFICIENT := DISPERSION! 1 . 1 5);

constant KEY; — deferred initialization

3 - 3

MIL-STD-181

5

10 December 1980
Ada Reference Manual

Examples of number declarations :

PI

TWO_PI
POWER_1

6

ONE, UN, EINS

constant

constant

constant

constant

3.141 59_26536;
2.0 * PI;

2**16;
1 ;

a real number
a real number
the integer 65_536
three different names for 1

Notes

:

Once an object is elaborated, its name can be used. In particular it can serve to form the names of

attributes of the object. Such attributes can even appear in the expression defining the initial value

of the object. In the above examples, the attribute OPTION'RANGE, denoting the range 1 ..10, is

used as a choice in the aggregate initializing the array OPTION.

The expression initializing a constant object may (but need not) be a static expression (see 4.9). In

the above examples, LIMIT and LOW-LIMIT are initialized with static expressions, but

TOLERANCE is not since it is initialized with the result of the call of a user defined function.

References'.

arithmetic operator 4.5, assignment statement 5.2, component 3.6 3.7, constraint 3.3, default initial value

3.7 3.8, deferred constant 7.1, discriminant 3.7.1 7.1, discriminant constraint 3.7.2, elaboration 3.1 3.9,

expression 4.4, formal parameter 6.2, generic program unit 12, literal expression 4.10, name 4.1, numeric

literal 2.4, package visible part 7.2, private type definition 7.4 static expression 4.9, type definition defini-

tion 3.3, type definition mark 3.3, universal integer type 2.4 3.5.4, universal real type 2.4 3.5.6.

3.3 Type and Subtype Declarations

A type characterizes a set of values and a set of operations applicable to those values. The values

are denoted either by literals or by aggregates of the type, and can be obtained as the result of

operations.

There exist several classes of types. Scalar types are types whose values have no components;
they comprise types defined by enumeration of their values, integer types, and real types. Array

and record types are composite; their values consist of several component values. An access type

is a type whose values provide access to other objects. Finally, there are private types where the

set of possible values is well defined, but not known to the users of such types.

Record and private types may have special components called discriminants whose values dis-

tinguish alternative forms of values of one of these types. Discriminants are defined by a discrimi-

nant part. The possible discriminants of a private type are known to its users. Hence a private type

is only known by its name, its discriminants if any, and the set of operations applicable to its

values.

The set of possible values for an object of a given type can be restricted without changing the set

of applicable operations. Such a restriction is called a constraint (the case of no restriction is also

included). A value is said to belong to a subtype of a given type if it obeys such a constraint; the

given type is called the base type of the subtype. A type is a subtype of itself; the base type of a

type is the type itself.

Certain types may have default initial values defined for objects of the type or for some of their

components.

3 - 4

Declarations and Types
MIL-STD-1815
10 December 1980

Certain characteristics of types and subtypes, such as certain specific values and operations, are

called attributes of the types and subtypes. Attributes are denoted by the form of names
described in section 4.1.4.

type_dec!aration

type identifier [discriminant_part] is type_definition;

|
incomplete_type_declaration

type_definition

enumeration_type_definition
|
integer_type_definition

|
real_type_definition

|
array_type_definition

|
record_type_definition

|
access_type_definition

|
derived_type_definition

|
private_type_definition

subtype_declaration ::=

subtype identifier is subtype_indication;

subtype_indication ::= type_mark [constraint]

type_mark ::= type_name
|
subtype_name

constraint ::=

range_constraint
|
accuracy_constraint

|
index_constraint

|
discriminant_constraint

The elaboration of a type definition always produces a distinct type. For the elaboration of a type
declaration, the type identifier is first introduced; elaboration of any discriminant part and of the

type definition follow in this order. The type identifier can then serve as a name of the type
resulting from the elaboration of the type definition and of the optional discriminant part.

The elaboration of certain forms of the type definitions for derived types, numeric types, and array
types has the effect of specifying a constraint for a type defined by an underlying unconstrained
type definition. The identifier introduced by a type declaration containing such a type definition is

the name of a subtype of the (anonymous) unconstrained type.

For the elaboration of a subtype declaration the subtype identifier is first introduced; if there is a

constraint in the subtype indication it is then evaluated, that is, any contained expression is

evaluated. The subtype identifier can then serve as a name of the declared subtype. In the absence
of a constraint in the subtype declaration, the subtype name is an alternative name to the type
mark. If the subtype declaration includes a constraint, the subtype name is an abbreviation for the
name of the base type of the type mark together with the constraint, with the meanings that they
both have at the subtype declaration.

Whenever a constraint appears after a type mark in a subtype indication, the constraint imposed
on the type mark must be compatible with any constraint already imposed by the type mark; the
exception CONSTRAINT_ERROR is raised if this condition is not satisfied. Compatibility is defined

for each form of constraint in the corresponding section (see 3.5, 3.5.7, 3.5.9, 3.6.1, 3.7.2, 3.8).

An index constraint (or a discriminant constraint) may only be imposed on a type mark that does
not already impose an index constraint (or a discriminant constraint).

Incomplete type declarations are used for the definition of recursive and mutually dependent
access types. Recursion in type definitions is not allowed unless an intermediate access type is

used (see 3.8).

3 - 5

MIL-STD-1815

10 December 1980
Ada Reference Manual

Attribute:

For any type or subtype T, the following attribute is defined

T'BASE The base type of T. This attribute can only be used to form the names of other
attributes, for example T'BASE'FIRST.

Examples of type declarations:

type COLOR is (WHITE, RED, YELLOW, GREEN, BLUE, BROWN, BLACK);
type COI NUM is rang® 1 .. 72;

type TABLE is array (1 .. 10) of INTEGER;

Examples of subtype declarations:

subtype RAINBOW
subtype RED_BLUE
subtype SMALI INT
subtype ZONE
subtype SQUARE
subtype MALE

is COLOR range RED .. BLUE;
is RAINBOW;
is INTEGER range -10 .. 10;

is COI—NUM range 1 .. 6;

is MATRIX! 1 .. 10, 1 .. 10);

is PERSON(SEX => M);

Notes:

Two type definitions always introduce two distinct types, even if they are textually identical. For

example, the array type definitions given in the declarations of A and B below define distinct types.

A : array! 1 .. 10) of BOOLEAN;
B : array! 1 .. 10) of BOOLEAN;

On the other hand, C and D in the following declaration are of the same type, since only one type

definition is given.

C, D ; array! 1 .. 10) of BOOLEAN;

A subtype declaration does not introduce a new type.

References:

access type 3.8, array type definition 3.6, constraint_error exception 1 1.1, derived type 3.4, discriminant

3.7.1, elaboration 3.1 3.9, enumeration type 3.5.1, identifier 2.3, incomplete type declaration 3.8, name
4.1, numeric type 3.5, private type definition 7.4, record type 3.7, scalar type 3.5

3.4 Derived Type Definitions

The elaboration of a derived type definition defines an unconstrained type deriving its
characteristics from those of a parent type; it may further define a subtype obtained by imposing aconstraint upon the unconstrained derived type. A derived type definition is only allowed in a type
declaration. The identifier introduced by such a type declaration can be either the name of thederived type if unconstrained, or it can be the name of a subtype of the (anonymous) derived type

derived_type_definition ::= new subtype_indication

3 - 6

Declarations and Types MIL-STD-1815

10 December 1980

The parent type is the base type of the subtype indicated after the reserved word new. If the sub-
type indication includes an explicit constraint, it is evaluated as part of the elaboration of the
derived type definition. Such an explicit constraint, or in its absence any constraint already
imposed by the type mark of the parent subtype, becomes associated with the type mark
introduced by the derived type declaration (subject to the same rules of compatibility as described
in section 3.3).

The characteristics of a derived type are as follows:

® The derived type belongs to the same class of types as the parent type (for example, the
derived type is a record type if the parent type is).

© The set of possible values for the derived type is a copy of the set of possible values for the
parent type. Explicit conversion of a value of the parent type into the corresponding value of
the derived type is possible and vice versa (see 4.6). If a default initial value exists for the
parent type, a corresponding initial value exists for the derived type.

® The notation for any literals or aggregates of the derived type is the same as for the parent
type. Such literals and aggregates are said to be overloaded. The notation used to denote any
component of objects of the derived type is the same as for the parent type.

• The same attributes are defined for the derived type as for the parent type. If the parent type
is an access type, the parent and the derived type share the same collection. Any representa-
tion specification already elaborated for the parent type (consequently, not in the same
declarative part) also applies to the derived type (see 13.1).

® Certain subprograms applicable to the parent type, that is, subprograms that have a
parameter or result of the parent type (or of one of its subtypes) are derived by the derived
type. These derived subprograms are implicitly declared at the place of the derived type
definition but may be redefined in the same declaration list.

For a predefined type, the subprograms that are derived are the corresponding predefined opera-
tions. The subprograms derived by a derived type can be further derived if this type is used as
parent type in another derived type definition. If a type is declared in a package specification, the
subprograms applicable to the type and declared in the package specification are derived by any
derived type definition given after the end of the package specification.

The specification of a derived subprogram is obtained by systematic replacement of the parent
type by the unconstrained derived type in the specification of the subprogram applicable to the
parent type; a type conversion to the derived type is applied to the bounds of any range constraint
for a parameter of the parent type and to any default value of the parent type. Prior to this transfor-
mation any subtype of the parent type is first expanded into the corresponding base type (that is,

the parent type) and any associated constraint.

The effect of a call of a derived subprogram is achieved by a call of the parent subprogram
preceded by (implicit) conversion of any in and in out parameters to the parent type, and followed
by (implicit) conversion of any in out parameters, out parameters, or function result to the derived
type.

Example'.

type MIDWEEK is new DAY range TUE .. THU;

3 - 7

MIL-STD-1815

10 December 1980
Ada Reference Manual

Notes:

The above rules mean that a type declaration of the form

type NEW_TYPE is new OLD_TYPE constraint:

where the constraint is compatible with those of OLD_TYPE, is equivalent to the succession of

declarations:

type new type is new basetype_of_OLD_TYPE;
subtype NEW_TYPE is newjype constraint:

where newjype is an identifier distinct from those of the program. Hence, the values and opera-

tions of the old type are derived by the new type, but objects of the new type must satisfy the

added constraint. For example, the name MIDWEEK is the name of a subtype of an anonymous
type derived from the type DAY.

The rule given in section 3.3, concerning the compatibility of a constraint imposed on a type mark

with any constraint already imposed by the type mark, applies to the subtype indication given in a

derived type definition. Note however that the constraint imposed on a parameter of a sub-

program applicable to the parent type may be incompatible with the constraint of the derived type.

In such a case all calls of the derived subprogram will raise the exception CONSTRAINT_ERROR.

References:

access type 3.8, aggregate 4.3, attribute 4.1.4, base type 3.3, constraint 3.3, declaration 3.1, elaboration

3.1 3.9, in parameter 6.2, in out parameter 6.2, literal 4.2, package specification 7.2, predefined operation

C, predefined type C, representation specification 13.1, subprogram specification 6.1, subtype 3.3, subtype

indication 3.3, type conversion 4.6, type mark 3.3

3.5 Scalar Types

Scalar types comprise discrete types and real types. All scalar types are ordered. A range con-

straint specifies a subset of values of a scalar type or subtype. Discrete types are the enumeration

types and integer types; they may be used for indexing and iteration over loops. Each discrete

value has a position number which is an integer number. Integer and real types are called numeric

types.

range_constraint ::= range range

range simple_expression .. simple_expression

The range L .. R describes the values from L to R inclusive. The values L and R are called, respec-

tively, the tower bound and upper bound of the range. A value is said to satisfy a range constraint if

it is a value of the range. A null range is a range for which the upper bound is less than the lower

bound. For a range constraint appearing after a type mark in a subtype indication, the type of the

simple expressions is given by the type mark. A range constraint is said to be compatible with an

earlier range constraint when both bounds of the later constraint lie within the range of the earlier

constraint, or when the range of the later constraint is null.

3 - 8

Declarations and Types MIL-STD-1815

10 December 1980

Attributes:

For any scalar type or subtype T the attributes FIRST and LAST are defined (see also Apppendix A
for the definition of the attributes IMAGE and VALUE).

T'FIRST The minimum value of the type T or the lower bound of the subtype T

T'LAST The maximum value of the type T or the upper bound of the subtype T

References:

constraint 3.3, discrete range 3.6.1, loop statement 5.6, simple expression 4.4, subtype 3.3

3.5.1 Enumeration Types

An enumeration type definition defines an ordered set of distinct values that are denoted by
enumeration literals.

enumeration_type_definition ::=

(enumerationJiteral {, enumeration_literal))

enumerationjiteral ::= identifier
|
characterjiteral

An enumeration value is denoted by an identifier or a character literal. Order relations between
enumeration values follow the order of listing, the first being less than the last (when more than
one). The position number of the first listed literal is zero; the position number of each other literal

is one more than that of its predecessor in the list.

For the elaboration of an enumeration type definition, each enumeration literal is introduced at the
point of its occurrence in the enumeration type definition; this elaboration declares the enumera-
tion literals.

The same identifier or character literal can appear in different enumeration types whose scopes
overlap. Such enumeration literals are said to be overloaded. An overloaded enumeration literal

may only appear at points of the program text where its type can be determined from the context
(see 6.6). A qualified expression can be used to resolve the type ambiguity where the context does
not otherwise suffice (see 4.7).

Examples:

type DAY
type SUIT
type LEVEL
type COLOR
type LIGHT

is (MON, TUE, WED, THU, FRI, SAT, SUN);
is (CLUBS, DIAMONDS, HEARTS, SPADES);
is (LOW, MEDIUM, URGENT);
is (WHITE, RED, YELLOW, GREEN, BLUE, BROWN, BLACK);
is (RED, AMBER, GREEN); — RED and GREEN are overloaded

type HEXA is ('A', 'B', 'C', 'D', 'E', 'F');

type MIXED is ('A', 'B', V, B, NONE);

subtype WEEKDAY is DAY range MON .. FRI;

subtype MAJOR is SUIT range HEARTS .. SPADES;
subtype RAINBOW is COLOR range RED .. BLUE; — the color RED, not the light

3 - 9

MIL-STD-1815

10 December 1980
Ada Reference Manual

References'.

character literal 2.5, elaboration 3.1 3.9, identifier 2.3, position number 3.5, qualified expression 4.7, scope
rules 8.1 8.2
3.5.2

Character Types

A character type is an enumeration type that contains character literals and possibly identifiers.

The values of the predefined type CHARACTER are the 128 characters of the ASCII character set.

Each of the 95 graphic characters of the ASCII character set can be denoted by a character literal.

The predefined package ASCII includes the declaration of constants denoting control characters

and of constants denoting graphic characters that are not in the basic character set.

Example

:

type ROMAN_DIGIT is (T, ’
V’

, 'X', 'L'. 'C', 'D\ 'M');

Note:

Character literals of character types can be used in character strings.

References:

ascii package C, character literal 2.5, character string 2.6 3.6.3, identifier 2.3

3.5.3

Boolean Type

There is a predefined enumeration type named BOOLEAN. It contains the two literals FALSE and

TRUE ordered with the relation FALSE < TRUE. The evaluation of a condition must deliver a result

of this predefined type.

References:

condition 5.3 5.5 5.7

3.5.4

Integer Types

The elaboration of an integer type definition introduces a set of consecutive integers as values of

the type.

integer_type_definition ::= range_constraint

Each bound of a range used for an integer type definition must be an integer value defined by a

static expression of some integer type. The range must not be a null range; it may include negative

values.

3 - 10

Declarations and Types MIL-STD-1815

10 December 1980

A type declaration of the form

type T is rang© L .. R;

is equivalent to the declaration of a type derived from one of the predefined integer types

type T is new integer type rang® L .. R;

where the predefined integer type is implicitly chosen so as to contain the values L through R
inclusive.

The predefined integer types include the type INTEGER. An implementation may also have
predefined types such as SHORT_INTEGER and LONGJNTEGER, which have respectively
significantly shorter and longer ranges than INTEGER. The range of each of these types must be
symmetric about zero (excepting an extra negative value for two's complement machines). The
base type of each of these types is the type itself.

The same arithmetic operators are defined for all predefined integer types and consequently for all

integer types (see 4.5 and appendix C). The position number of an integer number is the number
itself.

Integer literals are the literals of the type universaljnteger, there are no bounds on values of this

type. Implicit conversions exist from this type to any predefined or user defined integer type, so
that integer literals can appear in expressions of these types. The exception CONSTRAINT_ER-
ROR is raised by such an implicit conversion if the value is not within the range of the required
type.

Examples:

type PAGE_NUM is range 1 .. 2_000;
type LINE_SIZE is new INTEGER range 1 .. MAX_LINE_SIZE;

subtype SMALLJNT is INTEGER rang© -10 .. 10;

subtype COLUMN_PTR is LINE_SIZE range 1 .. 10;

Notes:

The name introduced by an integer type declaration is the name of a subtype of an anonymous
type derived from one of the predefined integer types (see 3.4). The value contained by an object
of an integer type must satisfy the constraint given in the corresponding integer type definition (an

attempt to violate this constraint will raise the exception CONSTRAINT_ERROR). On the other
hand, the operations of an integer type deliver results whose range is defined by the parent
predefined type; such a result need not therefore lie within the range defined by the constraint (the

exception NUMERIC_ERROR may be raised by an operation whose result is not within the
predefined range).

The smallest (most negative) integer value supported by the predefined integer types of an
implementation is the integer number SYSTEM.MIN_INT and the largest (most positive) value
SYSTEM.MAX_INT (see 13.7).

References:

arithmetic operator 4.5 0, constraint-error exception 11.1, derived type 3.4, elaboration 3.1 3.9, integer
literal 2.4, name 4.1, numeric_error exception 11.1, parent type 3.3, position number 3.5, static expression
4.9, subtype 3.3, universal integer type 2.4 3.2

3 - 11

MIL-STD-1815
10 December 1980 Ada Reference Manual

3.5.5 Attributes of Discrete Types and Subtypes

For every discrete type T the attributes T'POS, T'SUCC, T'PRED, and T'VAL are functions defined

as follows:

T'POS(X)

T'SUCC(X)

T'PRED(X)

T'VAL(N)

The parameter X must be a value of type T; the result of the function is the posi-

tion number of X; the type of the result of this overloaded function is of an

integer type determined by the context (see 6.6).

The parameter X must be a value of type T; the result of the function is the value of

type T whose position number is one greater than that of X. The exception

CONSTRAINT_ERROR is raised if X = T'LAST.

The parameter X must be a value of type T; the result of the function is the value of

type T whose position number is one less than that of X. The exception

CONSTRAINT_ERROR is raised if X = T'FIRST.

The parameter N must be a value of an integer type; the result of the function is the

value of type T whose position number is N. The exception CONSTRAINT_ERROR is

raised if N is not in the range T'POS(T'FIRST) .. T'POS(T'LAST).

For a subtype S of a discrete type, each of these four attributes denotes the corresponding

attribute of the base type. Consequently, the results delivered by S'SUCC, S'PRED, and S'VAL
need not be in the range of S; similarly, the actual parameters of S'POS, S'SUCC, and S'PRED
need not be in the range of S.

Examples :

For the types and subtypes declared in section 3.5.1 we have

- COLOR'FIRST = WHITE, COLOR'LAST = BLACK
- RAINBOW'FIRST = RED, RAINBOW'LAST = BLUE

- COLOR'SUCC(BLUE) = RAINBOW'SUCC(BLUE) = BROWN
- COLOR'POS(BLUE) = RAINBOW'POS(BLUE) = 4
- COLOR'VAL(O) = RAINBOW'VAL(O) = WHITE

Note:

The following relations are satisfied (in the absence of an exception) by these four attributes of dis-

crete types

T'POS(T'SUCC(X)) = T’POS(X) + 1

T'POS(T'PRED(X)) = T'POS(X) - 1

T'VAL(T'POS(X)) = X
T'POS(T'VAL(N)) = N

References-.

attribute 4.1.4, base type 3.3, constraint-error exception 11.1, discrete type 3.5, first attribute 3.5, function

6.5, last attribute 3.5, position number 3.5, subtype 3.3, type 3.3

3 - 12

Declarations and Types MIL-STD-1815

10 December 1980

3.5.6 Real Types

Real types provide approximations to the real numbers, with relative bounds on errors for floating

point types, and with absolute bounds for fixed point types.

real_type_definition ::= accuracy_constraint

accuracy_constraint ::=

floating_point_constraint
|
fixed_point_constraint

The elaboration of a real type definition defines a set of numbers called model numbers. Error

bounds on the predefined operations are defined in terms of the model numbers. An implementa-
tion of the type must include at least these model numbers and represent them exactly.

Real literals are the literals of the type universal_real; there are no bounds on values of this type.

Implicit conversions exist from this type to any predefined or user defined real type, so that real

literals can appear in expressions of these types. If the universal real value is a model number, the

conversion delivers the corresponding value. Otherwise, the converted value can be any value

within the range defined by the model numbers next above and below the universal real value. The
exception CONSTRAINT_ERROR is raised by such an implicit conversion if the value is not within

the range of the required type.

Note

:

An algorithm written to rely only upon the minimum numerical properties guaranteed by the type
definition will be portable without further precautions.

References'.

accuracy of operations 4.5.8, elaboration 3.1 3.9, fixed point constraint 3.5.9, fixed point type 3.5.9,

floating point constraint 3.5.7, floating point type 3.5.7, model fixed point number 3.5.9, model floating

point number 3.5.7, universal real type 2.4 3.2

3.5.7 Floating Point Types

For floating point types, the error bound is specified as a relative precision by giving the minimum
required number of decimal digits for the decimal mantissa (that is, for the decimal value when the

power of ten and leading zeros are ignored).

floating_point_constraint ::=

digits sfaf/c_simple_expression [range_constraint]

The required number D of decimal digits is specified by the value of the static expression following

the reserved word digits; it must be positive and of some integer type. This value determines a

corresponding minimum number B of binary digits for the binary mantissa, such that the relative

precision of the binary form is no less than that specified for the decimal form. (B is the integer

next above D*ln(10)/ln(2)).

3 - 13

MIL-STD-1815

10 December 1980
Ada Reference Manual

The model numbers of the type comprise zero and all numbers of the form

sign * binary mantissa * (2.0 ** exponent)

such that

® sign is +1 or -1

© 0.5 <= binaryjnantissa <1.0

• binary mantissa has exactly B digits after the point when expressed in base two

© exponent is an integer in the range -4*B .. 4*B

A floating point type declaration of one of the two forms (that is, with or without a range):

type NEW_TYPE isa dyits D [rang® L .. R);

where L and R if present must be static expressions of some real types, is equivalent to the

declaration of a type derived from one of the predefined floating point types

type NEW_TYPE is new floating_point_type digits D [rang® L .. R];

where the predefined floating_point_type is chosen appropriately such that its model numbers
include the model numbers defined by D. The predefined floating point types include the type

FLOAT. An implementation may also have predefined types such as SHORT_FLOAT and

LONG_FLOAT, which have respectively substantially less and more precision than FLOAT.

Where the range constraint is present the same model numbers are used, but objects of type

NEW_TYPE must satisfy the range constraint. Thus the value of D in the type definition guarantees

specific minimal properties for the type.

For a subtype or object declaration, the constraint can either be a range constraint or a floating

point constraint. In either case, the expressions giving the upper and lower bounds must be of the

type or subtype specified and within the range of the type or subtype. The expression following

digits in the floating point constraint must be a static expression of an integer type and its value

must not be greater than the corresponding number D for the floating point type or subtype.

A subtype declaration defines a set of model numbers which is a subset of the model numbers of

the base type. If the subtype indication includes a floating point constraint specifying fewer

decimal digits than the base type, then the mantissa length B of the model numbers is correspon-

dingly reduced; otherwise the model numbers for the subtype are the same as for the base type.

The compatibility of a floating point constraint with an earlier one is defined as follows. The

number of digits of the later one must not exceed that of the earlier one; if both floating point con-

straints have range constraints, the later range constraint must be compatible with the earlier

range constraint (within the accuracy of the corresponding real operations, see 4.5.8). A value of a

floating point type satisfies a floating point constraint if it satisfies any included range constraint.

3 - 14

Declarations and Types MIL-STD-1815

10 December 1980

Examples:

type COEFFICIENT is digits 10 rang® -1.0 .. 1.0;

type REAL is digits 8;

type MASS is new REAL digits 7 range 0.0 .. 1.0E10;

subtype SHORT_COEFF is COEFFICIENT digits 5;

Notes on the examples :

The implemented range for REAL is derived from a predefined type having at least 8 digits of preci-
sion. The definition for MASS is valid because REAL has more than 7 digits precision and because

MASS'LAST < REAL’LARGE <= REAL'LAST

References'.

accuracy constraint 3.5.6, base type 3.3, bounds 3.5, integer type 3.5.4, model number 3.5.6, range con-
straint 3.3, static expression 4.9, subtype 3.3, subtype indication 3.3

3.5.8 Attributes of Floating Point Types

For every floating point type or subtype F the following attributes are defined:

F'DIGITS

F'MANTISSA

F'EMAX

F'SMALL

F'LARGE

F'EPSILON

For a predefined type F, the equivalent number of decimal digits

precision for model numbers of the type. For other types or sub-
types, the number of decimal digits specified by the accuracy
constraint. Of type universaljnteger.

The length of the binary mantissa of model numbers of F. Of type
universaljnteger. (The number B of section 3.5.7).

The number such that the binary exponent range of model
numbers of F is -F'EMAX .. F'EMAX. Of type universaljnteger.

The smallest positive model number of F. Of type universal real.

The largest positive model number of F. Of type universaljeal.

The absolute value of the difference between 1 .0 and the next
model number above 1 .0. Of type universal real.

In addition, the usual attributes of scalar types FIRST and LAST are defined. (They need not be
model numbers).

3 - 15

MIL-STD-1815

10 December 1980
Ada Reference Manual

Notes :

The attributes EMAX, SMALL, LARGE and EPSILON are provided for convenience. They are all

related to MANTISSA, the parameter which defines the model numbers and is in turn related to

DIGITS, by the following formulas:

F'EMAX = 4*F'MANTISSA
F'SMALL = 2.0**(-F'EMAX - 1)

F'LARGE = 2.0**F'EMAX * (1.0 - 2.0**(-F'MANTISSA))

F'EPSILON = 2.0**(-F'MANTISSA + 1)

Since F'FIRST and F'LAST need not be model numbers, they may have machine dependent

properties.

Certain attributes of floating point types are machine dependent. They are described in section

13.7.1.

References-.

accuracy constraint 3.5.6, binary mantissa 3.5.7, boolean type 3.5.3, digits 3.5.7, exponent 3.5.7, first

attribute 3.5, floating point type 3.5.7, integer type 3.5.4, last attribute 3.5, model number 3.5.6,

numeric_error exception 11.1, universal_integer type 2.4 3.2, universal real type 2.4 3.2

3.5.9 Fixed Point Types

For fixed point types, the error bound is specified as an absolute value, called the delta of the fixed

point type.

fixed_point_constraint ::=

delta sfaf/c_simple_expression [range_constraint]

The delta is specified by the value of the static expression following the reserved word delta; it

must be positive and of some real type. The range constraint is required in a fixed point type defini-

tion; it is optional in a subtype indication.

The model numbers of a fixed point type comprise consecutive integer multiples of a certain

number called actual_delta. The multipliers comprise all integers in the range

-(2**N) + 1 .. (2**N) - 1

for some positive integer N. This implemented error bound actual_delta must be positive and not

greater than the specified delta. For a fixed point type definition with a range constraint of the

form

range L .. R

3 - 16

Declarations and Types
MIL-STD-1815

10 December 1980

L and R must be static expressions of some real types; the integer N must be chosen so that model
numbers of the type lie at most delta distant from each of L and R, although neither L nor R need
be model numbers. Thus the values of L and R and the delta in the type definition guarantee

specific minimal properties for the type.

For a subtype or object declaration, the constraint can be either a range constraint or a fixed point

constraint. In either case, the expressions giving the lower and upper bounds must be of the type

specified and within the range of the type or subtype. The expression in the fixed point constraint

must be a static expression of a real type and its value must not be less than the corresponding

value delta for the type or subtype.

A subtype declaration defines a set of model numbers which is a subset of the model numbers of

the base type. The actual delta of the subtype is a non negative power of two, times the actual

delta of the base type, and must not be greater than the specified delta.

Multiplication and division of fixed point values deliver results of a fixed point type with an
arbitrarily fine accuracy, whose name cannot be used in programs and which is referred to in this

text for explanatory purposes as universalJixed. The values of this type must be converted explicit-

ly to some numeric type.

The compatibility of a fixed point constraint with an earlier one is defined as follows. The delta of

the later one must not be less than that of the earlier one; if both fixed point constraints have
range constraints, the later constraint must be compatible with the earlier range constraint (within

the accuracy of the corresponding real operations; see 4.5.8). A value of a fixed point type
satisfies a fixed point constraint if it satisfies any included range constraint.

Examples:

— A pure fraction which requires all the available space in a word
-- on a two's complement machine can be declared as type FRAC:

DEL : constant := 1 .0/2**(W0RD_LENGTH - 1);

type FRAC is delta DEL range -1.0 .. 1.0 - DEL;

type LONG_FRAC is delta DEL/1000 range -1.0 .. 1.0 - DEL;
a pure fraction requiring more bits

type VOLT is delta 0.125 range 0.0 .. 255.0;

subtype S_VOLT is VOLT delta 0.5; -- same range as VOLT

Note

:

The actual delta is ordinarily a power of two, in order to make conversions fast. The actual delta

may be specified explicitly by a representation specification (see 13.2).

References

:

accuracy constraint 3.5.6, bounds 3.5, integer type 3.5.4, model number 3.5.6, range constraint 3.3, real

type 3.5.6, simple expression 4.4, static expression 4.9, subtype indication 3.3,

3 - 17

MIL-STD-1815

10 December 1980 Ada Reference Manual

3.5.10 Attributes of Fixed Point Types

For every fixed point type or subtype F the following attributes are defined:

F'DELTA If F is a type, or a subtype without a fixed point constraint, this is the

delta of the base type. Otherwise it is the delta specified by the fixed

point constraint. Of type universal_real.

F'ACTUALDELTA The actual delta of F. Of type universal real.

F’BITS When positive values of model numbers of F are expressed as

K*F'ACTUAL_DELTA, the attribute F'BITS is the number of binary

digits used to represent the unsigned integer K. Of type univer-

saljnteger. The attribute F'BITS is the number N of section 3.5.9.

F'LARGE The largest model number of F.

Notes:

Machine dependent attributes of real types are described in section 1 3.7. The following relation is

satisfied by the attributes LARGE, BITS, and ACTUAI—DELTA:

F'LARGE = (2**F'BITS - 1) * F'ACTUAL_DELTA

References:

accuracy constraint 3.5.6, bass type 3.3, boolean type 3.5.3, delta 3.5.9, model number 3.5.6

3.6 Array Types

An array object is a composite object consisting of components of the same component type. A
component of an array is designated using one or more index values belonging to specified dis-

crete types. The value of an array object is a composite value consisting of the values of its compo-

nents.

array_type_definition ::=

array (index |, index}) of componenf_subtype_indication

|
array index_constraint of componenf_subtype_indication

index ::= type_mark range <>

index_constraint ::= (discrete_range {, discrete_range})

discrete_range ::= type_mark [range_constraint]
|
range

An array object is characterized by the number of indices (the dimensionality of the array), the type

and position of each index, the lower and upper bounds for each index, and the type and possible

constraints of the components. The order of the indices is significant.

3 - 18

Declarations and Types
MIL-STD-1815

10 December 1980

A one-dimensional array has a distinct component for each possible index value. A multi-

dimensional array has a distinct component for each possible sequence of index values that can be
formed by selecting one value for each index position. The possible values for an index are all

values between the lower and upper bounds, inclusive.

There are unconstrained and constrained forms of array type definitions:

(1) Unconstrained array type definitions

These are array type definitions of the form

array (index |, index}) of compo/7enr_subtype_indication

The elaboration of such a type definition includes the evaluation of any constraint in the com-
ponent subtype indication; it defines an array type. For all objects of this array type, the

number of indices, the type and position of each index, and the subtype of the components are

as in the type definition. (The compound symbol <> is called a box-, it stands here for an
undefined range).

For each index, the actual values of the lower and upper bounds can be different for different

objects of the array type but they must satisfy any range constraint imposed by the type mark.

(2) Constrained array type definitions

These are array type definitions of the form

array index_constraint of componenf subtypejndication

The elaboration of such a type definition includes the evaluation of the index constraint and of

any constraint in the component subtype indication. It defines an unconstrained array type in

which each index has the base type of the corresponding discrete range, and with the same
component subtype; it further defines the subtype obtained by imposing the index constraint

upon the unconstrained array type. Consequently all arrays of a type declared with a con-
strained array type definition have the same bounds.

Unconstrained array type definitions are only allowed for type definitions used in type declarations.

Examples of unconstrained array type declarations-.

type MATRIX is arrayONTEGER range <>, INTEGER rang© <>) of REAL;
type BIT_VECTOR is arrayONTEGER range <>) of BOOLEAN;
type ROMAN is array(NATURAL range <>) of ROMAN_DIGIT;

Examples of constrained array type declarations-.

type TABLE is array) 1 .. 10) of INTEGER;
type SCHEDULE is array(DAY) of BOOLEAN;
type LINE is array! 1 .. MAX_LINE_SIZE) of CHARACTER;

3 - 19

MIL-STD-1815

10 December 1980
Ada Reference Manual

Examples of array declarations including a constrained type definition

:

GRID : array! 1 .. 80, 1 .. 100) of BOOLEAN;
MIX : array(COLOR rang® RED .. GREEN) of BOOLEAN;
PAGE : array! 1 .. 50) of LINE; -- an array of arrays

Note:

For a one-dimensional array, the rule given means that a type declaration with a constrained array

type definition such as

type T is array (INDEX) of COMPONENT;

is equivalent to the succession of declarations

type unconstrained is array (INDEX range <>) of COMPONENT;
subtype T is unconstrained (INDEX);

where unconstrained is an identifier distinct from those of the program. Similar transformations

apply to multi-dimensional arrays.

References

:

boolean type 3.5.3, character 3.5.2, discrete type 3.5, elaboration 3.1 3.9, index value 3.6.1, integer type

3.5.4, real type 3.5.6, subtype indication 3.3, type mark 3.3

3.6.1 Index Constraints and Discrete Ranges

An index constraint specifies the possible range of each index of an array type, and thereby the cor-

responding array bounds.

An index constraint can be imposed on an array type mark in a subtype indication, if and only if the

type mark designates an unconstrained array type. To be compatible with the type mark, the index

constraint must provide a discrete range for each index; the type of each discrete range must be
the same as that of the corresponding index; the range defined by each discrete range, if not a null

index range (see below), must be compatible with any range constraint already imposed by the

type mark given in the corresponding index.

If the bounds of a discrete range given by a range without a type mark are integer numbers or

integer literal expressions, the bounds are assumed to be of the predefined type INTEGER. This

rule also applies to discrete ranges used in for loops (see 5.5) and entry declarations (see 9.5).

The discrete range supplied for a given index defines a null index range if its upper bound is the

predecessor of its lower bound. If an index constraint contains a null index range, any array thus
constrained is a null array having no component. The lower bound of a null index range must
satisfy any range constraint imposed by the type mark of the index. The upper bound of a null index

range must also be a value of the base type of the index but this value need not satisfy the range
constraint (if any). The exception CONSTRAINT_ERROR is raised for any incompatible discrete

range or if the upper bound of a discrete range is less than the predecessor of the lower bound.

3 - 20

Declarations and Types MIL-STD-1815

10 December 1980

The bounds of an array object defined by an object declaration, or as component of another object,

must be known when the corresponding declaration is elaborated. These bounds are necessarily

known if the array subtype is given in this declaration by the type mark of a constrained array type;

the corresponding index constraint defines the bounds. If the array subtype contains the type mark
of an unconstrained array type, index bounds must be specified by an explicit index constraint in

variable declarations and in the subtype of components; the index constraint can be omitted from

the declaration of a constant, in which case the bounds are those of the initial value. The bounds of

an array value satisfy an index constraint if they are equal to the bounds of the index constraint.

For an array formal parameter whose parameter declaration specifies an unconstrained array type,

the bounds are obtained from the actual parameter. Within the body of the corresponding sub-

program, or generic unit, the formal parameter is constrained by the values of these bounds.

The bounds of any array object created by an allocator must be known upon allocation.

The expressions defining the discrete range allowed for an index need not be static, but can

depend on computed results. Arrays, one or more of whose bounds are not static, are called

dynamic arrays. In records, dynamic arrays may only appear when the dynamic bounds are dis-

criminants of the record type.

Examples of array declarations including an index constraint

:

BOARD : MATRIXd .. 8, 1 .. 8);

RECTANGLE : MATRIXd .. 20, 1 .. 30);

INVERSE : MATRIX(1 .. N, 1 .. N); - N need not be static

FILTER : BIT_VECTOR(0 .. 31);

Example of array declaration with a constrained array type-.

MY_TABLE : TABLE; -- all arrays of type TABLE have the same bounds

Example of record type with a dynamic array as component-.

type VAR_LINE(LENGTH : INTEGER) is

record

IMAGE : STRINGd .. LENGTH);
end record;

NULI LINE : VAR_LINE(0); - NULL_LINE.IMAGE is a null array

References:

actual parameter 6.4, allocator 4.8, base type 3.3, compatible range constraint 3.5, constant declaration

3.2, bounds 3.5, discriminant 3.7.1, elaboration 3.1 3.9, entry declaration 9.5, for loop 5.5, formal

parameter 6.2 6.4 12.1, generic program unit 1 2, integer type 3.5.4, initial value 3.2, parameter declaration

6.1 , range constraint 3.5, record type 3.7, subprogram body 6.3, subtype 3.3, type mark 3.3, unconstrained

array type 3.6, variable declaration 3.2

3 21

MIL-STD-1815
10 December 1980 Ada Reference Manual

3.6.2 Array Attributes

For an array object A (or for the type mark A of a constrained array type), the following attributes
are defined (N is an integer value given by a static expression):

A'FIRST The lower bound of the first index.

A'D IT

A'LENGTH

A'RANGE

A'FIRST(N)

The upper bound of the first index.

The number of values of the first index (zero for a null range). This attribute

is overloaded and produces a result of an integer type determined by the
context (see 6.6).

The subtype defined by the range A'FIRST .. A'LAST.

The lower bound of the N-th index.

A'LAST(N)

A'LENGTH(N)

A'RANGE(N)

The upper bound of the N-th index.

The number of values of the N-th index (zero for a null range). This attribute

is overloaded and produces a result of an integer type determined by the
context (see 6.6).

The subtype defined by the range A'FIRST(N) .. A’LAST(N).

Examples (using arrays declared in the examples of section 3.6.1):

- FILTER'FIRST = 0
- FILTER’LAST = 31
- FILTER'LENGTH = 32
- BOARD'LAST(I) = 8
- RECTANGLE'LAST(2) = 30

Note:

The above attributes are not defined for unconstrained array types. The following relations are
satisfied by the above attributes if the index type is an integer type:

A'LENGTH = A’LAST - A'FIRST + 1

A'LENGTH(N) = A'LAST(N) - A'FIRST(N) + 1

References:

attribute A, bounds 3.6, constrained array type 3.6, index 3.6, integer type 3.5.4, range 3.5, static expres-
sion 4.9 10.6, subtype 3.3, type mark 3.3

3 - 22

Declarations and Types
MIL-STD-1815

10 December 1980

3.6.3 Strings

The predefined type STRING denotes one-dimensional arrays of the predefined type CHARACTER,
indexed by values of the predefined subtype NATURAL:

subtype NATURAL is INTEGER range 1 .. INTEGER'LAST;
type STRING is array (NATURAL range <» of CHARACTER;

Character strings (see 2.6) are a special form of positional aggregate applicable to the type STR-
ING and other one-dimensional arrays of characters. Catenation is a predefined operator for the
type STRING and for one-dimensional array types; it is represented as &. The relational operators

<, <=, >, and >= are defined for strings, and correspond to lexicographic order (see 4.5.2).

Examples :

STARS : STRINGO .. 120) := (1 .. 120 => V);

QUESTION : constant STRING := "HOW MANY CHARACTERS?";
- QUESTION' FIRST = 1, QUESTION'LAST = 20 (the number of characters)

ASK_TWICE : constant STRING := QUESTION & QUESTION;
NINETY_SIX : constant ROMAN ;= "XCVI";

References :

aggregate 4.3, character type 3.5.2, character string 2.6, catenation 3.6.3 4.5.3, subtype 3.3

3.7 Record Types

A record object is a composite object consisting of named components, which may be of different

types. The value of a record object is a composite value consisting of the values of its components.

record_type_definition ::=

record

componentJist
end record

componentJist ::=

I component-declaration} [variant_part]
|

null;

component-declaration ::=

identifier-list : subtype_indication [:= expression];

|
identifier-list : array_type_definition [:= expression];

The elaboration of a record type definition defines a record type; it consists of the elaboration of

any included component declarations, in the order in which they appear (including any component
declaration in a variant part).

MIL-STD-1815

10 December 1980
Ada Reference Manual

A component declaration defines one or more components of a type given either by a subtype
indication or by a constrained array type definition.

For the elaboration of a component declaration, the identifiers of the list are first introduced; the

component type is then established by elaborating the corresponding array type definition or by
evaluating any constraint in the subtype indication; the identifiers can then be used to name the

corresponding components. Finally, if a component declaration indicates an explicit initialization, the

corresponding expression is evaluated; this initial value must satisfy any constraint imposed by the

subtype indication (or by the array type definition), otherwise the exception CONSTRAINT_ERROR is

raised.

If a component declaration indicates an explicit initialization, the value thus specified is the default

initial value for the corresponding components. In the absence of an explicit initialization in a com-
ponent declaration, a default initial value exists for the corresponding components if and only if

there is one for their type. An explicit initialization may only be given if assignment is available for

the component type (see 7.4).

All objects of a record type that has neither a discriminant nor a variant part have the same compo-
nents. If the component list is defined by the reserved word null, the record type has no compo-
nent; all records of the type are null records.

Examples:

type DATE is

record

DAY : INTEGER range 1 .. 31;

MONTH : MONTH_NAME;
YEAR : INTEGER range 0 .. 4000;

end record;

type COMPLEX is

record

RE : REAL := 0.0;

IM : REAL := 0.0;

end record;

-- both components of every complex record are initialized to zero (if no explicit initialization).

Note:

If a default initial value exists for a component of a record type without a discriminant, it is the

same for all objects of the type since it is the value obtained during the elaboration of the record

type definition.

References:

array type definition 3.6, constraint 3.3, constraint_error exception 11.1, discriminant 3.7.1, elaboration

3.1, enumeration type 3.5.1, expression 4.4, identifier 2.3, object 3.2, subtype indication 3.3, variant part

3.7.3

3 - 24

Declarations and Types MIL-STD-1815

10 December 1980

3.7.1 Discriminants

A discriminant part can be given in the type declaration for a record type; it defines the discrimi-

nants of the type. A discriminant is a named component of any object of such a record type (ap-

pearing before any of the components in the type definition).

discriminant_part

(discriminant-declaration {; discriminant_declaration})

discriminant-declaration ::=

identifier_list : subtype_indication [:= expression]

Each discriminant must belong to a discrete type. The elaboration of a discriminant declaration
proceeds in the same way as that of a component declaration. Default initial values must be
provided either for all or for none of the discriminants of a discriminant part.

Within a record type definition the name of a discriminant may be used either as a bound in an
index constraint, or as the discriminant name of a variant part, or to specify a discriminant value in

a discriminant specification. In each of these three cases, the discriminant name must appear by
itself, that is, not as part of a larger expression. No other dependence between record components
is allowed.

Each record value includes a value for each discriminant declared for the record type; it also
includes a value for each record component that does not depend on a discriminant. The values of
the discriminants determine which other component values must appear in the record value.

The discriminants of a record object can only be changed by assigning a complete record value to
the object.

Record types and private types implemented as record types are the only types that may have dis-

criminants.

Examples :

type BUFFER(SIZE : INTEGER range 0 .. MAX := 100) is

record

POS : INTEGER range 0 .. MAX := 0;
VALUE : STRINGO .. SIZE);

end record;

type SQUARE(SIDE : INTEGER) is

record

MAT : array(1 .. SIDE, 1 .. SIDE) of REAL;
end record;

3 - 25

MIL-STD-1815

10 December 1980 Ada Reference Manual

type DOUBLE(NUMBER : INTEGER) is

record

LEFT : BUFFER (NUMBER);
RIGHT : SQUARE (NUMBER);

end record;

type CUBE(SIDE : INTEGER) is

record

VALUE : array(1 .. SIDE) of SQUARE(SIDE); -- double dependency
end record;

Notes :

A discriminant need not be referred to by any record component, as shown in the example below

type ITEM(NUMBER : NATURAL) is

record

CONTENT : INTEGER;
end record;

References-.

array type definition 3.6, bound 3.6, component 3.7, component declaration 3.7, constraint 3.3, discrete

type 3.5, dynamic array 3.6.1, elaboration 3.1, private types 7.4.1, object 3.2, record component 3.7,

record type 3.7

3.7.2 Discriminant Constraints

The allowable discriminant values for a record object can be fixed by a discriminant constraint. A
record value satisfies a discriminant constraint if each discriminant of the record value has the

value imposed by the corresponding discriminant specification.

discriminant-constraint ::=

(discriminant_specification |, discriminant_specification))

discriminant_specification ::=

[discriminant name {| discriminant_navne\ =>] expression

Each expression specifies the value of a discriminant. The expressions can be given by position (in

the order of discriminant declarations) or by naming the chosen discriminant. Named discriminant

specifications can be given in any order, but if both notations are used in one discriminant con-

straint, the positional discriminant specifications must be given first. A discriminant constraint

must provide a value for every discriminant of the type.

3 - 26

Declarations and Types
MIL-STD-1815
10 December 1980

A discriminant constraint can be imposed on a type mark in a subtype indication if and only if the

type mark does not already impose a discriminant constraint. The discriminant constraint is com-
patible with the type mark if and only if each specified discriminant value satisfies any range con-

straint imposed on the corresponding discriminant.

In the absence of default initial values for the discriminants of a type, a discriminant constraint

must be supplied for every object declaration declaring an object of the type. Similarly a discrimi-

nant constraint must be imposed on such a type if this type is used in a record component declara-

tion or as the component type in an array type definition. The constraint can be imposed either

explicitly or by supplying the name of a subtype that incorporates such a constraint.

If a discriminant constraint is imposed on an object declaration, a record component, or an array

component, each discriminant is initialized with the value specified in the constraint. This value

overrides any discriminant default initialization and cannot later be changed.

For a formal parameter whose parameter declaration indicates a type with discriminants, these are

initialized with the discriminants of the actual parameter (subject to any discriminant constraint on
the formal parameter). Within the body of the corresponding subprogram, or generic unit, the

value of a discriminant of the formal parameter cannot be changed if the corresponding actual

parameter is constrained.

Attribute

:

For any object A of a type with discriminants, the following boolean attribute is defined.

A'CONSTRAINED True if and only if a discriminant constraint applies to the object A; if A is a

formal parameter, the value of this attribute is obtained from that of the
actual parameter. Of type BOOLEAN.

Examples'.

LARGE : BUFFER(200);
MESSAGE : BUFFER;

always 200 characters: LARGE'CONSTRAINED = TRUE
initially 100 characters: MESSAGE'CONSTRAINED = FALSE

BASIS : SQUARE(5);
ILLEGAL : SQUARE;

constrained, always 5 by 5

illegal, a SQUARE must be constrained

Notes'.

The above rules ensure that discriminants always have a value, either because they must be con-
strained, or because of the existence of a default initial value.

If a subtype declaration includes a discriminant constraint, all objects of this subtype are con-
strained and their discriminants are initialized accordingly.

References'.

actual parameter 6.4, array type definition 3.6, component subtype 3.6, constraint-error exception 1 1.1,

default initial value 3.7, discriminant 3.7.1, expression 4.4, formal parameter 6.2 6.4, generic program unit

12, record component 3.7, record object 3.7, subtype declaration 3.3, type mark 3.3

3 - 27

MIL-STD-1815

10 December 1980 Ada Reference Manual

3.7.3 Variant Parts

A record type with a variant part specifies alternative lists of components. Each variant defines the

components for the corresponding value (or values) of the discriminant. A variant can have an
empty component list, which must be specified by null.

variant_part ::=

case discriminant name is

(when choice 7] choice} =>
component_list}

end case;

choice ::= simple_expression
|
discrete_range

|
others

A record value must contain the component values of a given variant if the discriminant value is

equal to one of the values specified by the choices prefixing the corresponding component list. This

rule applies in turn to any further variants which may be included in the component list of the given

variant.

A choice given as a discrete range stands for all values in the corresponding range. The choice

others stands for all values of the discriminant type (possibly none) that are not specified in

previous choices; it can only appear alone and for the last component list. Each value of the dis-

criminant subtype if this subtype is static, otherwise each value of the discriminant type, must be
represented once and only once in the set of choices of a variant part. The value of a choice given

in a variant part must be determinable statically (see 4.9).

Example of record type with a variant part :

type DEVICE is (PRINTER, DISK, DRUM);
type STATE is (OPEN, CLOSED);

type PERIPHERAMUNIT : DEVICE := DISK) is

record

STATUS : STATE;
case UNIT is

when PRINTER =>
LINE_COUNT : INTEGER range 1 .. PAGE_SIZE;

when others =>
CYLINDER : CYLINDERJNDEX;
TRACK : TRACK_NUMBER;

end case;

end record;

Examples of record subtypes :

subtype DRUM_UNIT is PERIPHERAL(DRUM);
subtype DISK_UNIT is PERIPHERAL(DISK);

Examples of constrained record variables :

WRITER : PERIPHERAL(UNIT => PRINTER);
ARCHIVE : DISK_UNIT;

3 - 28

Declarations and Types
MIL-STD-1815

10 December 1980

Note:

Choices with discrete values are also used in case statements and in aggregates.

References :

aggregate 4.3, case statement 5.4, discrete range 3.6.1, discriminant 3.7.1, discrete type 3.5, simple
expression 4.4, subtype 3.3

3.8 Access Types

Objects declared in a program are accessible by their name. They exist during the lifetime of the
declarative part to which they are local. In contrast, objects may also be created by the execution
of allocators (see 4.8), Since they do not occur in an explicit object declaration, they cannot be
denoted by their name. Instead, access to such an object is achieved by an access value returned
by an allocator; the access value is said to designate the object.

access_type_definition ::= access subtype_indication

incomplete_type_declaration ::= type identifier [discriminant_part];

The elaboration of an access type definition causes the evaluation of any constraint given in the
subtype indication. The access type resulting from this elaboration is the type of a set of access
values. This set includes the value null designating no object at all. Other access values of the type
can be obtained by execution of an allocator associated with the type. Each such access value
designates an object of the subtype indicated after the reserved word access. The objects created
by an allocator and designated by the values of an access type form a collection implicitly

associated with the type.

The null value of an access type is the default initial value of the type. An access value obtained by
an allocator can be assigned to several access variables. Hence an object created by an allocator

may be designated by more than one variable or constant of the access type. If an access object is

constant, the contained access value always designates the same object but the value of the
designated object can be modified.

If the subtype indication in the access type definition denotes either an unconstrained array type or

a type with discriminants but without a discriminant constraint, the corresponding index bounds or
discriminant values must be supplied for each allocator. The allocated object is constrained by
these values.

Components of an object designated by a value of an access type may have values of the same or

of another access type. This permits recursive and mutually dependent access types. Their
declaration requires a prior incomplete type declaration for one or more types. Whenever an
incomplete type declaration appears in a list of declarative items, the full type declaration must
appear later in the same list of declarative items. Both the incomplete type declaration and the
corresponding full type declaration must have the same discriminant part (if any) which is

elaborated only once, at the earlier occurrence. The correspondence between the incomplete and
the full type declaration follows the same rules as for private types (see 7.4.1). The name of a yet
incompletely defined type can be used only as the type mark of the subtype indication of an access
type definition.

3 - 29

MIL-STD-1815

10 December 1980 Ada Reference Manual

The only constraint that can appear after the name of an access type in a subtype indication (for

example one used in the declaration of an access variable) is either a discriminant constraint or an
index constraint. Such a constraint is imposed on any object designated by a value of the access
type (hence by any value other than null); the type of the designated objects must be a type with
the corresponding discriminants or indexes.

Examples

:

type FRAME is access MATRIX;

type BUFFER_NAME is access BUFFER;

type CELL; — incomplete type declaration

type LINK is access CELL;

type CELL is

record

VALUE : INTEGER;
SUCC : LINK;

PRED : LINK;

end record;

HEAD : LINK := new CELL(0, null, null);

Examples of mutually dependent access types:

type PERSON(SEX : GENDER); -- incomplete type declaration

type CAR; — incomplete type declaration

type PERSON_NAME is access PERSON;
type CAR_NAME is access CAR;

type PERSON(SEX : GENDER) is

record

NAME : STRING(1 .. 20);

AGE : INTEGER range 0 .. 130;
VEHICLE : CAR_NAME;
case SEX is

when M => WIFE : PERSON_NAM E(SEX => F);

when F => HUSBAND : PERSON_NAM E(SEX => M);

end case;

end record;

type CAR is

record

NUMBER : INTEGER;
OWNER : PERSON_NAME;

end record;

MY_CAR, YOUR_CAR, N EXT_CAR : CAR_NAME; - initialized with null

3 - 30

Declarations and Types MIL-STD-1815

10 December 1980

References'.

allocator 4.8, array type definition 3.6, collection size 13.2, discriminant constraint 3.7.2, discriminant part

3.7, index bound 3.6, index constraint 3.7.1, subtype indication 3.3

3.9 Declarative Parts

A declarative part contains declarations and related information that apply over a region of
program text. Declarative parts may appear in blocks, subprograms and packages.

declarative_part

(declarativeJtem
| (representation_specification) fprogram_component|

declarative_item ::= declaration
|
use_clause

program_component ::= body
|

package_declaration
|
task_declaration

|
body_stub

body ::= subprogram_body
|
package_body

|
task_body

For the elaboration of a declarative part, its constituents (possibly none) are successively
elaborated in the order in which they appear in the program text.

The body of a subprogram, package, or task declared in a declarative part must be provided in the
same declarative part; but if the body of one of these program units is a separately compiled sub-
unit (see 10.2), it must be represented by a body stub at the place where it would otherwise
appear.

Access to any entity before its elaboration is not allowed. In particular, a subprogram must not be
called during the elaboration of a declarative part if its subprogram body appears later than the
place of the call.

The exception STORAGE_ERROR may be raised by the elaboration of a declarative part if storage
does not suffice for the declared entities.

References'.

Elaboration of declarations 3.1, discriminant d. 3.7.1, entry d. 9.5, generic d. 12.1, loop parameter d. 5.5,
number d. 3.2, object d. 3.2, package d. 7.2, parameter d. 6.1 , renaming d. 8.5, subprogram d. 6.1 , subtype
d. 3.3, type d. 3.3

Elaboration of type definitions 3.3, access t.d. 3.8, array t.d. 3.6, derived t.d. 3.4, enumeration t.d. 3.5.1,
integer t.d. 3.5.4, private t.d. 7.4, real t.d. 3.5.6, record t.d. 3.7

Elaboration of context 10.1, compilation unit 10.1 10.5, declarative part 3.9, discriminant part 3.3, generic
body 1 2.2, generic formal parameter 12.1, library unit 1 0.5, package body 7.3, representation specification
13.1, subprogram body 6.3, subunit 10.2, task body 9.1, task object 9.2, task specification 9.1, use clause
8.4, with clause 10.1.1

exception during elaboration 11.4.2, order of elaboration 10.5

3 - 31

MIL-STD-1815

10 December 1980

4. Names and Expressions

4.1 Names

Names can denote declared entities. These are objects, numbers, types and subtypes, sub-
programs, packages, tasks and their entries, and exceptions. Names can also be labels, block
names, or loop names. Particular forms of names denote attributes, operators, and components of
objects. Finally, a name can denote the result returned by a function call.

name ::= identifier

|
indexed_component

|
slice

|
selected_component

j
attribute

|
function_call

|
operator_symbol

The simplest form for the name of an entity is the identifier given in its declaration. Function calls

and operator symbols are described in Chapter 6. The remaining forms of names are described
here.

Examples of simple names

:

PI -- the name of a number
LIMIT the name of a constant

COUNT -- the name of a scalar variable

BOARD the name of an array variable

MATRIX — the name of a type

SORT — the name of a function

ERROR — the name of an exception

References'.

array type definition 3.6, boolean type 3.5.3, bound 3.6, component 3.2, identifier 2.3, index value 3.6.1,
function call 6.4, numeric type 3.5, numeric_error exception 4.5.8 1 1.1, operator symbol 6.1, range 3.5,
type declaration 3.3

4.1.1 Indexed Components

An indexed component denotes either a component of an array or an entry in a family of entries.

indexed_component ::= name(expression {, expression})

4 - 1

MIL-STD-1815

10 December 1980 Ada Reference Manual

In the case of a component of an array, the name denotes an array object (or an access object

whose value designates an array object). Alternatively, the name can be a function call delivering

an array (or delivering an access value that designates an array). The expressions specify the index

values for the component; there must be one such expression for each index position of the array

type.

In the case of an entry in a family of entries, the name denotes an entry family and the expression

(only one can be given) specifies the index value for the individual entry.

Each expression must be of the type of the corresponding index. If evaluation of an expression

gives an index value that is outside the range specified for the index, the exception

CONSTRAINT_ERROR is raised. This exception is also raised if the name denotes an access

object whose value is null.

Examples of indexed components :

MY_TABLE(5)
PAGE(IO)
BOARD(M, J + 1)

PAGE(10)(20)
REQUEST(MEDIUM)
NEXT_FRAME(F)(M, N)

Notes on the examples'.

Distinct notations are used for components of multidimensional arrays (such as BOARD) and

arrays of arrays (such as PAGE). The components of an array of arrays are arrays and can therefore

be indexed. Thus PAGE(10)(20) denotes the 20th component of PAGE(IO).

Note :

The language does not define the order of evaluation of the different expressions of an indexed

component of a multi-dimensional array. Hence programs that rely on a particular order are

erroneous.

References'.

access value 3.8, array type definition 3.6, array component 3.6, constraint_error exception 11.1, entry 9.5,

entry family 9.5, expression 4.4, function 6.5, function call 6.4, index value 3.6.1, name 4.1 range 3.5

-- a component of a one dimensional array

-- a component of a one dimensional array

a component of a two dimensional array

a component of a component
an entry of the family REQUEST
an indexed component of the function call NEXT_FRAME(F)

4.1.2 Slices

A slice is a one dimensional array denoting a sequence of consecutive components of a one

dimensional array.

slice ::= name (discrete_range)

The name given in a slice denotes an array object (or an access object whose value designates an

array object). The name can be a function call delivering an array (or delivering an access value

that designates an array).

4 - 2

Names and Expressions MIL-STD-1815
10 December 1980

The type of a slice is the base type of the named array. The bounds of the slice are given by the
discrete range; the slice is a null slice denoting a null array if the discrete range is a null index range
(see 3.6.1).

If a slice is not null, the index values of its discrete range must be possible index values for the

named array; otherwise the exception CONSTRAINT_ERROR is raised. This exception is also

raised if the name denotes an access object whose value is null.

Examples of slices:

STARS(1 .. 15)

PAGE(10 .. 10 + SIZE)

PAGE(L)(A .. B)

STARS! 1 .. 0)

MY_SCHEDULE(WEEKDAY)
STARS(5 .. 1 5)0)

Note:

a slice of 1 5 characters

a slice of 1 + SIZE components
a slice of the array PAGE(L)
a null slice

bounds given by subtype

same as STARS(9)

For a one dimensional array A, the name A(N .. N) is a slice of one component; its type is the base
type of A. On the other hand A(N) is a component of the array A and has the corresponding com-
ponent type.

References:

access object 3.8, access value -3.8, array type definition 3.6, base type 3.3, bound 3.6, 3.6.1, con-
straint_error exception 1 1.1, discrete range 3.6.1, function 6.5, function call 6.4, index 3.6, name 4.1, null

array 3.6.1, null range 3.6.1, type definition 3.3

4.1.3 Selected Components

Selected components are used to denote record components. They are also used for objects
designated by access values. Finally, selected components are used to form names of declared
entities.

selected_component ::=

name.identifier
|
name.all

| name.operator_symbol

A selected component can denote either

(a) A component of a record:

The name denotes a record (or an access object whose value designates a record) and the
identifier specifies the record component. The name can be a function call delivering a record
(or delivering an access value that designates a record).

(b) An object designated by an access value:

The name denotes an access object and is followed by a dot and the reserved word all. The
name can be a function call delivering an access value.

4 - 3

MIL-STD-1815

10 December 1980
Ada Reference Manual

(c) An entity declared in the visible part of a package:

The name denotes a package and the identifier specifies the declared entity. For an operator,

the corresponding operator symbol (that is, the operator enclosed by double quotes) follows

the name of the package and the dot.

(d) An entry (or entry family) of a task:

The name denotes a task object (or if the selected component occurs in a task body, this

program unit) and the identifier specifies one of its entries (one of its entry families).

(e) An entity declared in an enclosing subprogram body, package body, task body, block, or loop:

The name denotes this (immediately) enclosing unit and the identifier (or the operator symbol)
specifies the declared entity. This notation is only allowed within the named enclosing unit. If

there is more than one visible enclosing overloaded subprogram of the given name, the

selected component is ambiguous, independently of the identifier (see section 8.3 on visibility

rules).

For variant records, a component identifier can denote a component in a variant part. In such a

case, the component must be one of those that must be present for the existing discriminant value

(or values), otherwise the exception CONSTRAINT_ERROR is raised. This exception is also raised

if the name has the access value null in the above cases (a) and (b).

Examples of selected components :

APPOINTMENT.DAY
NEXT_CAR.OWNER
NEXT_CAR.OWNER.AGE
WRITER.UNIT
MIN_CELL(H).VALUE

a record component
a record component
a record component
a record component (a discriminant)

a selected component of the function call MIN_CELL(H)

NEXT_CAR.all the object designated by the access variable NEXT_CAR

TABLE_MANAGER.INSERT
APPLICATION."*"
CONTROL.SEIZE
POOL(K).WRITE

a procedure in the package TABLE_MANAGER
an operator in the package APPLICATION
an entry of the task CONTROL
an entry of the task POOL(K)

MAIN.ITEM_COUNT a variable declared in the procedure MAIN

Notes'.

Every parameterless function call must use empty parentheses (see 6.4). Hence F().C can only be

a selected component of the function result and, within the body of F, F.L can only be used to

denote a locally declared entity L. For a record with components that are other records, the iden-

tifier of each level must be given to name a nested component.

4 - 4

Names and Expressions
MIL-STD-1815
10 December 1980

References'.

access object 3.8, access value 3.8, constraint_error exception 11.1, discriminant value 3.7.1, entity 3.1,
function call 6.4, identifier 2.3, name 4.1 , operator 4.5, operator symbol 6.1 , overloading a subprogram 6.6,
package 7, package body 7.3, record type 3.7, record component 3.7, subprogram body 6.3, task 9, task
body 9.1, variant part 3.7.3, visible part 7.2

4.1.4 Attributes

Attributes denote certain predefined characteristics of named entities,

attribute ::= name'identifier

An attribute identifier is always prefixed by an apostrophe; such an identifier is not reserved

(unless it is already reserved for another reason). An attribute can be a value, a function, or a type

or subtype. Specific attributes are described with the language constructs associated with their

use.

Appendix A gives a list of all the language defined attributes. Additional attributes may exist for an

implementation.

Examples of attributes'.

COLOR'FIRST
RAINBOW'BASE'FIRST
REAL'DIGITS
BOARD'LAST(2)
BOARD'RANGE(I)
POOL(K)’TERM INATED
DATE'SIZE
CARD'ADDRESS

minimum value of the enumeration type COLOR
same as COLOR'FIRST
precision of the type REAL
upper bound of the second dimension of BOARD
subtype of index range of the first dimension of BOARD
TRUE if task POOL(K) is terminated

number of bits for records of type DATE
address of the record variable CARD

References:

enumeration type 3.5.1 , function 6.5, identifier 2.3, real type 3.5.6, record variable 3.7, subtype declaration

3.3, task 9, type declaration 3.3, upper bound 3.6 3.6.1, value 3.2 3.3

4.2 Literals

A literal denotes an explicit value of a given type,

literal ::=

numericjiteral
|
enumeration_literal

|
character_string

|
null

Numeric literals are the literals of the types universaljnteger and universaljea!. Enumeration
literals include character literals and denote values of the corresponding enumeration types. A
character string denotes a one dimensional array of characters. The literal null stands for the null

access value which designates no object at all.

4 - 5

MIL-STD-1815

10 December 1980
Ada Reference Manual

Examples:

3.141 59_26536
1_345
CLUBS
'A'

"SOME TEXT"

References:

a real literal

an integer literal

an enumeration literal

an enumeration literal that is a character literal

a character string

array type definition 3.6, character literal 2.5, character string 2.6, enumeration literal 3.5.1, null access
value 3.8, numeric literal 2.4 3.2 4.10, universaLinteger type 2.4 3.2 3.5.4 4.10, universaLreal type 2.4
3.2 3.5.6 4.10

4.3 Aggregates

An aggregate denotes a record or an array value constructed from component values,

aggregate ::=

(component-association {, component_association})

component_association ::=

[choice (| choice) =>] expression

The expressions define the values to be associated with components. An aggregate must be com-
plete, that is, a value must be provided for each component of the composite value. Component
associations can be given by position (in textual order for record components) or by naming the

chosen components. Choices have the same syntax as in variant parts (see 3.7.3); they are compo-
nent identifiers in the case of record aggregates, index values or ranges of index values in the case
of array aggregates. Each value, or each component identifier must be represented once and only

once in the set of choices of an aggregate. The choice others can only appear alone and in the last

component association; it stands for all remaining components, if any.

For named components, the component associations can be given in any order (except for the
choice others), but if both notations are used in one aggregate, all positional component associa-
tions must be given first. Aggregates containing a single component association must always be
given in named notation. Specific rules concerning component associations exist for record

aggregates and array aggregates.

An expression given in a component association must satisfy any constraint associated with a cor-

responding component, otherwise the exception CONSTRAINT_ERROfi is raised.

Note:

The language does not define the order of evaluation of the expressions of the different component
associations. Hence programs relying on a particular order are erroneous.

Aggregates may be overloaded, that is, a given aggregate may be an aggregate for more than one
array or record type, its interpretation depending on the context.

4 - 6

Names and Expressions
MIL-STD-1815
10 December 1980

References :

array type definition 3.6, array aggregate 4.3.2, composite value 3.3, „ „ uullo .. aill . „rrur

v

e

St°3
n

7.3

1
' eXPreSSi°n 4 ’4 ' ind6X V8lUe 3 -6 ' °therS 3 7 -3 ' reC0rd 3 7 ' ^cord aggregate 4S". vie 3 3,

constraint 3.3, constraint-error

4.3.1 Record Aggregates

A record aggregate denotes a record value and must specify an explicit value for each component
(including discriminants) of the record value, whether or not a default initial value exists for the
component. A component association with more than one choice is only allowed if the denoted
components are of the same type. The same rule applies for the choice others representing all

other components.

The value specified for a discriminant governing a variant part must be given by a static expression.

Examples of positional record aggregate:

(4, JULY, 1776)

Examples of record aggregates with named components:

(DAY => 4, MONTH => JULY, YEAR => 1776)
(MONTH => JULY, DAY => 4, YEAR => 1776)
(UNIT => DISK, STATUS => CLOSED, CYLINDER => 9, TRACK => 1)
(DISK, CLOSED, TRACK => 5, CYLINDER => 12)

Note:

For positional aggregates, discriminant values appear first since the discriminant part is given first;
they must be in the same order as in the discriminant part.

References:

component association 4.3, default initial value 3.3 3.7, discriminant 3.7.1, discriminant part 3.7.1, dis-
criminant value 3.7.1, record value 3.3 3.7, static expression 4.9, variant part 3.7.3

4.3.2 Array Aggregates

An array aggregate denotes an array value.

For aggregates in named notation, a choice given by a simple expression stands for the cor-
responding index value; a choice given by a discrete range stands for all possible index values in
the range. The value of each choice (excepting others) must be determinable statically unless the
aggregate consists of a single component association, including a single choice.

The bounds of a named aggregate that does not contain the choice others are determined by the
smallest and largest choices given.

4 - 7

MIL-STD-1815

10 December 1980 Ada Reference Manual

The bounds of any aggregate containing the choice others are defined by the context. The only

allowable contexts for such an aggregate are as follows:

(a) The aggregate is an actuai parameter corresponding to a formal parameter of a constrained

array subtype.

(b) The aggregate appears in a return statement as the expression specifying the value returned

by a function whose result is of a constrained array subtype.

(c) The aggregate is either qualified by a constrained array subtype, or used in an allocator for a

constrained array subtype.

(d) The aggregate is used to specify the value of a component of an enclosing aggregate, and the

enclosing aggregate is itself in one of these four contexts.

In each of these four cases the bounds are defined by the applicable index constraint.

The bounds of a positional aggregate not containing the choice others are similarly defined by the

applicable index constraint, if the aggregate appears in one of the above four contexts. Otherwise,

the lower bound is given by S'FIRST, where S is the index subtype: the upper bound is deter-

mined by the number of components.

An aggregate for an n-dimensional array is written as a one-dimensional aggregate of components

that are (n-1)-dimensional array values. If an array aggregate contains positional component

associations, the only named association it may contain is a component association with the

choice others.

The exception CONSTRAINT_ERROR is raised if the number of components of the aggregate is

incompatible with the context.

Examples of positional array aggregates'.

(7. 9, 5, 1, 3, 2, 4, 8, 6, 0)

TABLE'(5, 8, 4, 1, others => 0)

Examples of array aggregates in named notation:

(1 .. 5 => (1 .. 8 => 0.0))

TABLE'(2
| 4

|
10 => 1, others => 0) -- qualified by TABLE, see 4.7

SCHEDULE'IMON .. FRI => TRUE, others => FALSE)

SCHEDULE'IWED
|
SUN => FALSE, others => TRUE)

Examples of aggregates as initial values:

A : TABLE := (7, 9, 5, 1, 3, 2, 4, 8, 6, 0); - A(1) = 7, A(10) = 0

B : TABLE := TABLE'(2
|
4

|
10 => 1,others => 0); - B(1) = 0, B(1 0) = 1

C : constant MATRIX := (1 .. 5 => (1 .. 8 => 0.0)); -- C’FIRST(I) = 1, C'LAST(2) = 8

D : BIT_VECTOR(M .. N) := (M .. N => TRUE);

E : BIT_VECTOR(M .. N) := (E'RANGE => TRUE);
F : STRINGI1 .. 1) := (1 => 'F'); -- a one component aggregate: same as "F"

4 - 8

Names and Expressions
MIL-STD-1815
10 December 1980

References'.

actual parameter 6.4, bound 3.6 3.6.1, component association 4.3, constrained array 3.6, discrete range

3.6.1, first attribute 3.6.2, formal parameter 6.2, function 6.5, index constraint 3.7.1, index value 3.6,

others 3.7.3, qualified expression 4.7, simple expression 4.4

4.4 Expressions

An expression is a formula that defines the computation of a value,

expression

relation (and relation

|

|
relation (or relation!

|
relation (xor relation |

|
relation (and then relation)

|
relation (or else relation)

relation ::=

simple_expression [relationaLoperator simple_expression]

|
simple__expression [not] in range

|
simple_expression [not] in subtype_indication

simple_expression ::= [unary_operator] term (adding_operator term)

term ::= factor fmultiplying_operator factor)

factor ::= primary [** primary]

primary ::=

literal
|
aggregate

|
name

|
allocator

|
function_call

|
type__conversion

|
qualified_expression

|
(expression)

Each primary has a value and a type. The only names allowed as primaries are attributes (those

which have a value) and names denoting objects (the value of such a primary is the value of the

object). The type of an expression depends only on the type of its constituents and on the

operators applied; for an overloaded constituent or operator, the determination of the constituent

type, or the identification of the appropriate operator, may depend on the context. The rules defin-

ing the allowed operand types and the corresponding result types for all predefined operators are

given in section 4.5 below.

Examples of primaries :

4.0

(1 .. 10 => 0)

VOLUME
DATE'SIZE
SINE(X)
COLOR'(BLUE)
REAL(M*N)
(LINE_COUNT + 10)

real literal

— aggregate array value
— value of a variable

— attribute

— function call

— qualified expression

conversion

— parenthesized expression

4 - 9

MIL-STD-1815
10 December 1980 Ada Reference Manual

Examples of expressions'.

VOLUME
B**2
LINE_COUNT mod PAGE_SIZE

-4.0

not DESTROYED
B**2 - 4.0*A*C

PASSWORD! 1 .. 5) = "JAMES"
N not in 1 .. 10

INDEX = 0 or ITEM_HIT
(COLD and SUNNY) or WARM
A**(B**C)

References'.

primary

factor

term

simple expression

simple expression

simple expression

relation

relation

expression

expression, the parentheses are required

expression, the parentheses are required

adding operator 4.5.3, aggregate 4.3, allocator 4.8, array aggregate 4.3.2, attribute 4. 1 .4, function call 6.4,

literal 2.5 4.2, multiplying operator 4.5.5, name 4.1 , object 3.2, overloading 3.5.1 6.6 6.7, qualified expres-

sion 4.7, range 3.5, subtype indication 3.3, type 3, type conversion 4.6, unary operator 4.5.4, value 3.3,

variable 3.2 4.1

4.5 Operators and Expression Evaluation

The following operators, divided into six classes, have a predefined meaning in the language.

These operators, and only these, may be overloaded for user defined types and, excepting equality

and inequality, may be redefined (see 6.7). They are given in the order of increasing precedence.

logicaLoperator ::= and
|
or

|
xor

relational_operator ::= =
1
/=

1 < 1
<=

1
>

adding_operator ::= +
|

-
1

&

unary_operator ::= +
|

-
|
not

multiplying_operator

exponentiating_operator

::= *

::= **

1 / |
mod

|
rem

The short circuit control forms and then and or else have the same precedence as logical

operators. The membership tests in and not in have the same precedence as relational operators.

All operands of a factor, term, simple expression, or relation, and the operands of an expression

that does not contain a short circuit control form, are evaluated (in an undefined order) before

application of the corresponding operator. The right operand of a short circuit control form is

evaluated if and only if the left operand has a certain value (see 4.5.1).

4 - 10

Names and Expressions
MIL-STD-18 1

5

10 December 1980

For a term, simple expression, relation, or expression, operators of higher precedence are applied
first. In this case, for a sequence of operators of the same precedence level, the operators are
applied in textual order from left to right (or in any order giving the same result); parentheses can
be used to impose a specific order.

The execution of some operations may raise an exception for certain values of the operands. Real
expressions are not necessarily evaluated with exactly the specified accuracy (precision or delta),

but the accuracy will be at least as good as that specified.

Examples of precedence-.

not SUNNY or WARM -
X > 4.0 and Y > 0.0 -

-4.0*A**2
Y**(-3)

A / B * C
A + (B + C)

Note:

The language does not define the order of evaluation of the two operands of an operator (ex-

cepting short circuit control forms). A program that relies on a specific order (for example because
of mutual side effects) is therefore erroneous.

References:

accuracy of operations with real operands 4.5.8, adding operator 4.5.3, delta 3.5.9, exception 1 1, expres-
sion 4.4, factor 4.4, logical operator 4.5.1, membership operator 4.5.2, name 4.1, overloading an operator
6.7, precision 3.5.6, real type definition 3.5.6, relation 4.4, relational operator 4.5.2, short circuit control
form 4.5.1, simple expression 4.4, term 4.4, type 3

same as (not SUNNY) or WARM
same as (X > 4.0) and (Y > 0.0)

same as -(4.0 * (A**2))

parentheses are
.
necessary

same as (A/B)*C

evaluate B + C before adding it to A

4.5.1 Logical Operators and Short Circuit Control Forms

The predefined logical operators are applicable to BOOLEAN values and to one dimensional arrays
of BOOLEAN values having the same number of components.

Operator Operation Operand Type Result Type

and conjunction BOOLEAN
array of BOOLEAN components

BOOLEAN
same array type

or inclusive disjunction BOOLEAN
array of BOOLEAN components

BOOLEAN
same array type

xor exclusive disjunction BOOLEAN
array of BOOLEAN components

BOOLEAN
same array type

The operations on (non null) arrays are performed on a component by component basis on
matching components (as for equality, see 4.5.2). The lower bound of the index of the resulting

array is the lower bound of the index subtype of the array type.

4 - 11

MIL-STD-1815

10 December 1980 Ada Reference Manual

The operands need not have the same bounds, but must have the same number of components,
otherwise the exception CONSTRAINT_ERROR is raised.

The short circuit control forms and then and or else are applied to operands of the predefined type
BOOLEAN and deliver a value of this type. If the left operand of an expression with the control
form and then evaluates to FALSE, the right operand is not evaluated and the value of the expres-
sion is FALSE. If the left operand of an expression with the control form or else evaluates to TRUE,
the right operand is not evaluated and the value of the expression is TRUE. If both operands are
evaluated, and then delivers the same result as and, and or else delivers the same result as or.

Examples of logical operators'.

SUNNY or WARM
FILTERO .. 10) and FILTER! 1 5 .. 24)

Examples of short circuit control forms :

NEXT_CAR.OWNER /= null and then NEXT_CAR.OWNER.AGE > 25
N = 0 or else A(N) = HIT_VALUE

References'.

array type definition 3.6, boolean type 3.5.3, boolean value 3.5.3, bound 3.6.1, component 3.6, con-
straint-error exception 11.1, equality 4.5.2, expression 4.4, false 3.5.3, index 3.6, true 3.5.3

4.5.2 Relational and Membership Operators

The predefined relational operators have operands of the same type and return values of the
predefined type BOOLEAN. Equality and inequality are predefined for any two objects of the same
type, excepting limited private types and composite types having components of limited private
types.

Operator Operation Operand Type Result Type

= /= equality and inequality any type BOOLEAN

A A II V V II test for ordering any scalar type

discrete array type

BOOLEAN
BOOLEAN

Equality for the discrete types is equality of the values. For real operands whose values are nearly
equal, the results of the predefined relational operators are given in section 4.5.8. Two access
values are equal either if they designate the same object, or if both are equal to null.

The values of two non null arrays or two non null records, of the same type, are equal if and only if

their matching components are equal, as given by the predefined equality operator for the compo-
nent type. Two null arrays of the same type are always equal; two null records of the same type are
always equal. If equality is explicitly defined for a limited private type, it does not extend to com-
posite types having components of the limited private type. Equality can be defined explicitly for

such composite types.

4 - 12

Names and Expressions MIL-STD-1815

10 December 1980

For comparing two non null records of the same type, matching components are those which have
the same component identifier.

For comparing two non null one dimensional arrays of the same type, matching components are

those whose index values match in the following sense: the lower bounds of the index ranges are

defined to match, and the successors of matching indices are defined to match. For multidimen-
sional arrays, matching components are those whose index values match in successive index posi-

tions. If any component of an array has no matching component in the other array, the two arrays
are not equal.

The inequality operator gives the complementary result to the equality operator.

The ordering operators <, <=, >, and >= are defined for one dimensional arrays of an array type
whose components are of a discrete type. These operators correspond to lexicographic order
using the order relation of the component type for corresponding components. A null array is less

than any array having at least one component.

The membership tests in and not in test whether a value is within a corresponding range, or

whether it satisfies any constraint imposed by a subtype indication. The value must be of the same
type as the bounds of the range or as the base type of the subtype. These operators return a value
of the predefined type BOOLEAN. A test for an accuracy constraint always yields the result TRUE.

Examples-.

X /= Y

< "A" and "A" < "AA"
"AA" < "B"

MY_CAR = null

MY_CAR = YOUR_CAR
MY_CAR.all = YOUR_CAR.all

N not in 1 .. 10
TODAY in WEEKDAY
TODAY in DAY range MON .. FRI

ARCHIVE in DISK_UNIT

References-.

with real X and Y, is implementation dependent

TRUE
TRUE

true if MY_CAR has been set to null

true if we both share the same car

true if the two cars are identical

range check
subtype check
same subtype check
subtype check

access value 3.8, accuracy constraint 3.5.6, accuracy of operations with real operands 4.5.8, array type
definition 3.6, boolean type 3.5.3, bounds 3.6, component 3.3, composite type 3.6 3.7, constraint 3.3,
delta attribute 3.5.10, discrete type 3.5, fixed point type 3.5.9, floating point type 3.5.7, index range 3.6,
index value 3.6, limited private type 7.4.2, range 3.5, real type 3.5.6, record value 3.7, scalar type 3.5, sub-
type declaration 3.3, small attribute 3.5.8, type declaration 3

4 13

MIL-STD-1815
10 December 1980

Ada Reference Manual

4.5.3 Adding Operators

The predefined adding operators + and - return a result of the same type as the operands.

Operator Operation Operand Type Result Type

+ addition numeric type same numeric type

- subtraction numeric type same numeric type

& catenation one dimensional

array type

same array type

For real types, the accuracy of the result is determined by the operand type. For all numeric types

the exception NUMERIC_ERROR is raised if the result of addition or subtraction does not lie

within the implemented range of the type (for real operands see 4.5.8).

The adding operator & (catenation) is applied to two operands of a one dimensional array type.

Catenation is also defined for a left operand of a one dimensional array type and a right operand of

the corresponding component type and vice versa. The result is an array of the same type. For any
one-dimensional array type T whose component type is C and whose index is specified as

INDEX range <>

the effect of catenation is defined by the three following functions

LOW : constant INDEX := INDEX'FIRST;

function (X, Y : T) return T is

RESULT : T(LOW .. INDEX'VAL(INDEX'POS(LOW) + (X'LENGTH + Y'LENGTH - 1)));

begin

RESULT!LOW .. INDEX'VAL(INDEX'POS(LOW) + (X’LENGTH - 1))) := X;

RESULT(INDEX'VAL(INDEX'POS(LOW) + X'LENGTH) .. RESULT' LAST) := Y;

return RESULT;
end;

function (X : C; Y : T) return T is

begin

return (LOW => X) & Y;

end;

function (X : T; Y : C) return T is

begin

return X & (LOW => Y);

end;

The exception CONSTRAINT_ERROR is raised if the upper bound of the result exceeds the range

of the index subtype.

Examples:

Z + 0.1 — Z must be of a real type

"A” & "BCD" — catenation of two strings

4 - 14

Names and Expressions MIL-STD-1815

10 December 1980

References'.

accuracy of operations 4.5.8, array type 3.6, catenation 3.6.3, numeric type 3.5, numeric_error exception

11.1, real type 3.5.6, string 2.6 3.6.3, type declaration 3

4.5.4 Unary Operators

The predefined unary operators are applied to a single operand and return a result of the same
type.

Operator Operation Operand Type Result Type

+ identity numeric type same numeric type

- negation numeric type same numeric type

not logical negation BOOLEAN
array of BOOLEAN components

BOOLEAN
same array type

The operator not may be applied to a one dimensional array of BOOLEAN components. The result

is a one dimensional boolean array with the same bounds; each component of the result is

obtained by logical negation of the corresponding component of the operand (that is, the compo-
nent which has the same index value).

For a numeric operand, the exception NUMERIC_ERROR is raised if the result does not lie within

the implemented range of the type (for real operands see 4.5.8).

References'.

accuracy of operations with real operands 4.5.8, array type 3.6, numeric type 3.5, numeric_error exception
11.1

4.5.5 Multiplying Operators

The predefined operators * and / for integer and floating point values and the predefined operators
mod and rem for integer values return a result of the same type as the operands.

Operator Operation Operand Type Result‘ Type

* multiplication integer same integer type
floating same floating point type

/ integer division integer same integer type
floating division floating same floating point type

mod modulus integer same integer type

rem remainder integer same integer type

4 15

MIL-STD-1815

10 December 1980
Ada Reference Manual

Integer division and remainder are defined by the relation

A = (A/B)*B + (A rem B)

where (A rem B) has the sign of A and an absolute value less than the absolute value of B. Integer
division satisfies the identity

(-A)/B = -(A/B) = A/(-B)

The result of the modulus operation is such that (A mod B) has the sign of B and an absolute value
less than the absolute value of B; in addition this result must satisfy the relation

A = B*N + (A mod B)

for some integer value of N.

For fixed point values, the following multiplication and division operations are provided. The types
of the left and right operands are denoted by L and R.

Operator Operation Operand
L

Type
R

Result Type

*i: multiplication fixed

integer

fixed

integer

fixed

fixed

same as L

same as R

universal fixed

/ division fixed

fixed

integer

fixed

same as L

universal fixed

Integer multiplication of fixed point values is equivalent to repeated addition and hence is an
accurate operation. Division of a fixed point value by an integer does not involve a change in type
but is approximate.

Multiplication of operands of the same or of different fixed point types is exact and delivers a result

of the type universalJixed whose delta is arbitrarily small. The result of any such multiplication

must always be explicitly converted to some numeric type. This ensures explicit control of the
accuracy of the computation. The same considerations apply to division of a fixed point value by
another fixed point value.

The exception NUMERIC_ERROR is raised by any multiplying operator if the result does not lie

within the implemented range of the type (for real operands see 4.5.8). In particular it is raised by
integer division, rem, and mod if the second operand is zero.

Examples :

I : INTEGER := 1;

J : INTEGER := 2;

K : INTEGER := 3;

X : MY_FLOAT digits 6 := 1.0;

Y : MY_FLOAT digits 6 := 2.0;

F : FRAC delta 0.0001 := 0.1;

G : FRAC delta 0.0001 := 0.1;

4 16

Names and Expressions

MIL-STD-1815

10 December 1980

Expression Value Result Type

l*J 2 same as 1 and J, that is, INTEGER
K/J 1 same as K and J, that is, INTEGER
K mod J 1 same as K and J, that is, INTEGER

X/Y 0.5 same as X and Y, that is, MY_FL0AT
F/2 0.05 same as F, that is, FRAC

3*F 0.3 same as F, that is, FRAC
F*G 0.01 universal fixed, conversion needed
FRAC(F*G) 0.01 FRAC, as stated by the conversion

MY_FLOAT(J)*Y 4.0 MY_FL0AT, the type of both operands after conversion of J

Notes:

For positive A and B, A/B is the quotient and A rem B is the remainder when A is divided by B. The
following relations are satisfied by the rem operator:

A rem (-B) = A rem B
(- A) rem B = -(A rem B)

For any integer K the following identity holds

A mod B = (A + K*B) mod B

The relations between integer division, remainder and modulus are illustrated by the following

table

A B A/B A rem B A mod B A B A/B A rem B A mt

10 5 2 0 0 -10 5 -2 0 0
1

1

5 2 1 1 -1

1

5 -2 -1 4
12 5 2 2 2 -12 5 -2 -2 3
13 5 2 3 3 -13 5 -2 -3 2
14 5 2 4 4 -14 5 -2 -4 1

10 -5 -2 0 0 -10 -5 2 0 0
11 -5 -2 1 -4 -11 -5 2 -1 -1
12 -5 -2 2 -3 -12 -5 2 -2 -2
13 -5 -2 3 -2 -13 -5 2 -3 -3
14 -5 -2 4 -1 -14 -5 2 -4 -4

References:

accuracy of operations 4.5.8, addition 4.5.3, fixed point type 3.5.9, floating point type 3.5.7, integer type
3.5.4, numeric type 3.5, numeric_error exception 4.5.8 11.1, relation 4.4, type definition 3.3

4 - 17

MIL-STD-1815

10 December 1980 Ada Reference Manual

4.5.6 Exponentiating Operator

The predefined exponentiating operator ** is used for exponentiation.

Operator Operation Operand
L

** exponentiation integer

floating

Type Result Type
R

non-negative integer same as L

integer same as L

Exponentiation of an operand by a positive exponent is equivalent to repeated multiplication (as

indicated by the exponent) of the operand by itself. For a floating operand, the exponent can be
negative, in which case the value is the reciprocal of the value with the positive exponent.
Exponentiation by a zero exponent delivers the value one.

Exponentiation of an integer raises the exception CONSTRAINT_ERROR for a negative exponent.
Exponentation raises the exception NUMERIC_ERROR if the result does not lie within the

implemented range of the type (for real operands see 4.5.8).

References :

constraint_error exception 11.1, floating point type 3.5.7, multiplication 4.5.5, numeric type 3.5,

numeric_error exception 11.1

4.5.7 The Function Abs

The predefined function ABS returns the absolute value of its operand.

Function Operation Operand type Result type

ABS absolute value numeric type same numeric type

The exception NUMERIC_ERROR is raised if the result does not lie within the implemented range

of the type (for a real argument see 4.5.8).

Examples-.

ABS(J - K)

References :

accuracy of operations with real operands 4.5.8, numeric_error exception 11.1

4 - 18

Names and Expressions MIL-STD-1815

10 December 1980

4.5.8 Accuracy of Operations with Real Operands

A real type or subtype specifies a set of model numbers. Both the accuracy to be expected from

any operation giving a real result, and the result of any relation between real operands are defined

in terms of these model numbers.

Given a real value of a type or subtype T there (normally) exists a smallest interval whose bounds

are model numbers and which encloses the given real value. This interval is called the model inter-

val associated with the real value. This model interval is not defined where the absolute value of

the given value exceeds the largest model number, that is, T'LARGE; the model interval is then

said to overflow.

The model interval associated with a model number is an interval consisting of the number alone.

The model interval associated with a real interval (that is, a range of real values) is the smallest

interval whose bounds are model numbers and which encloses the values of the real interval.

The bounds on a real value resulting from a predefined operation are defined by the three following

steps:

(1) A model interval of the appropriate type or subtype is associated with the value of each

operand.

(2) A new interval is formed by applying the (exact) mathematical operation to operands from the

model intervals produced in step (1); for one operand the new interval consists of the range of

results produced for all operands in the model interval; for two operands the new interval

consists of the range of results produced for all pairs of operands selected from the cor-

responding model intervals.

(3) A model interval of the type of the result of the operation is associated with the interval

produced in step (2).

Step (3) gives the required bounds on the result of the machine operation, except when one of the

model intervals in step (1) or (3) overflows. The exception NUMERIC_ERROR can only (but need
not) be raised in the case of interval overflow.

The result of a relation between two real operands (which need not be of the same subtype) is

defined by associating a model interval of the appropriate type or subtype with each operand, and
then according to the cases which follow:

(a) The intervals are disjoint (no real value is in both): the result is the (exact) mathematical

result.

(b) Each interval is a single model number, and they are equal; the result is the (exact)

.mathematical result.

(c) The intervals have only a single number in common (this number can only be a model
number): the result is the (exact) mathematical result either of comparing the given operands

or of comparing the first operand with itself.

(d) Either the intervals have more than one value in common, or one of the intervals (at least)

overflows: the result is implementation defined.

The exception NUMERIC_ERROR can only (but need not) be raised in the case of interval

overflow.

4 - 19

MIL-STD-1815

10 December 1980
Ada Reference Manual

Notes:

Given X/Y where X = 15.0 and Y = 3.0 which are both model numbers, then the result is exactly
5.0 provided this is a model number of the resulting type. In the general case, division does not
yield model numbers and in consequence one cannot assume that (1 .0/3.0) *3.0 =1.0

References:

bound 3.5, large attribute 3.5.8, model number 3.5.6, numeric_error exception 11.1, predefined operator
4.5, range 3.5, real type 3.5.6, relational operator 4.5.2, subtype declaration 3.3

4.6 Type Conversions

Explicit type conversions are allowed between closely related types as defined below:

type_conversion ::= type_mark (expression)

The only allowed type conversions correspond to the following three cases:

(a) Numeric types

The expression can be of any numeric type; the value of the expression is converted to the
base type of the type mark; this base type must also be a numeric type. For conversions
involving real types, the result is within the accuracy of the specified type. Conversion of a
real value into an integer type involves rounding.

(b) Array types

The conversion is allowed when for both array types (the operand type, and the base type of
the type mark) the index types for each dimension are the same or one is derived from the
other, and the component types are the same or one is derived from the other. If the type
mark denotes an unconstrained array type, the bounds of the result are the same as those of
the operand. If the type mark denotes a constrained array (sub)type, for each component of
either array there must be a matching component of the other array; the bounds of the result
are then those imposed by the type mark. In either case the value of each component of the
result is the same as that of the matching component of the operand (see 4.5.2 for the defini-
tion of matching components).

(c) Derived types

The conversion is allowed when the type of the operand is (directly) derived from the type
denoted by the type mark, or vice versa. The conversion may result in a change of representa-
tion (see 13.6).

The exception CONSTRAINT_ERROR is raised by a type conversion if the value of the operand
fails to satisfy a constraint imposed by the type mark. For array type conversions this includes any
index constraint.

4 - 20

Names and Expressions
MIL-STD-1815

10 December 1980

If a conversion is allowed from one type to another, the reverse conversion is also allowed. This

reverse conversion is used where an actual parameter of mode in out or out is a type conversion of

a (variable) name. For a parameter of mode in out the value of the named object is converted

before the call and the converted value is passed as actual parameter; for parameters of modes in

out or out, the value of the formal parameter is converted back to the operand type upon return

from the subprogram.

Examples of numeric type conversion :

REAL(2*J) -- value is converted to floating point

INTEGER(1 .6) - value is 2

INTEGER(-0.4) - value is 0

Examples of conversions between array types :

type SEQUENCE is array (INTEGER range <>) of INTEGER;

subtype DOZEN is SEQUENCER .. 12);

LEDGER : array(1 .. 100) of INTEGER;

SEQUENCE) LEDGER) -- bounds are those of LEDGER
SEQUENCE(LEDGER(31 .. 42)) - bounds are 31 and 42
DOZEN(LEDGER(31 .. 42)) -- bounds are those of DOZEN

Example of conversion between derived types'.

type A_FORM is new B_FORM;

X : A_FORM;
Y : B_FORM;

X := A_FORM(Y);
Y := B_FORM(X); -- the reverse conversion

References'.

actual parameter 6.4, array type definition 3.6, base type 3.3, bounds 3.6.1, component 3.2, constrained

array 3.6, constraint 3.3, constraint_error exception 1 1.1, derived type 3.4, expression 4.4, floating point

type 3.5.7, formal parameter 6.2, in out parameter 6.2, index constraint 3.6.1, integer type 3.5.4, name 3.

1

4.1 ,
numeric type 3.5, out parameter 6.2, real type 3.5.6, type definition 3.3, type mark 3.3, unconstrained

array type 3.6, variable 3.2 4.1

4.7 Qualified Expressions

A qualified expression is used to state explicitly the type, and possibly the subtype, of an expres-

sion or aggregate.

qualified_expression ::=

type_mark'(expression)
|
type_mark'aggregate

The expression (or the aggregate) must have the same type as the base type of the type mark. In

addition it must satisfy any constraint imposed by the type mark, otherwise the exception

CONSTRAINT_ERROR is raised.

4 - 21

MIL-STD-1815

10 December 1980 Ada Reference Manual

Examples:

type MASK is (FIX, DEC, EXP, SIGNIF);
type CODE is (FIX, CLA, DEC, TNZ, SUB);

PRINT (MASK'(DEC)); - DEC is of type MASK
PRINT (CODE'(DEC)); - DEC is of type CODE

for I in CODE'(FIX) .. CODE'(DEC) loop ... -- qualification needed for either FIX or DEC
for I in CODE range FIX .. DEC loop ... -- qualification unnecessary
for I in CODE'(FIX) .. DEC loop ... -- qualification unnecessary for DEC

DOZEN'D
| 3 | 5 |

7 => 2, others => 0)

Notes:

The same enumeration literal may appear in several types; it is then said to be overloaded. In

these cases and whenever the type of an enumeration literal or aggregate is not known from the
context, a qualified expression may be used to state the type explicitly. In particular, an overloaded
enumeration literal must be qualified in a subprogram call to an overloaded subprogram that can-
not be identified when given as a parameter on the basis of remaining parameter or result types, in

a relational expression where both operands are overloaded enumeration literals, or in an array or
loop parameter range where both bounds are overloaded enumeration literals. Explicit qualification

is also used to specify which one of a set of overloaded parameterless functions is meant, or to

constrain a value to a given subtype.

References:

aggregate 4.3, base type 3.3, constraint 3.3, constraint_error exception 11.1, enumeration literal 3.5.1,
expression 4.4, literal 4.2, loop parameter 5.5, overloaded literal 3.4 3.5.1, overloaded subprogram 6.6,
parameter 6.2, relational expression 4.4, subprogram call 6.4, subtype declaration 3.3, type declaration 3.3,
type mark 3.3

4.8 Allocators

The execution of an allocator creates an object and delivers as result an access value that

designates the object.

allocator ::=

new type_mark [(expression)]

|
new type_mark aggregate

|
new type_mark discriminant_constraint

|
new type_mark index_constraint

The type mark given in an allocator denotes the type of the object created; the type of the access
value returned by the allocator is defined by the context.

4 - 22

Names and Expressions MIL-STD-1815
10 December 1980

For the execution of an allocator, any expression, aggregate, discriminant constraint or index con-

straint is first evaluated; a new object of the type given by the type mark is then created. If the type

mark denotes an unconstrained array type or an unconstrained type with discriminants, the

allocator must contain either an explicit initial value (an expression or an aggregate), or an index or

discriminant constraint; this is the only case in which an index or discriminant constraint is permit-

ted. The created object is constrained by such an explicit constraint, or by the bounds or discrimi-

nants of the initial value.

If a default initial value exists for objects of the type or for some of their components, excepting

discriminants, then the corresponding default initializations are performed. Finally any explicitly

given initial value is assigned to the object, subject to the constraint of the type mark, and an

access value designating the created object is returned.

The exception CONSTRAINT_ERROR is raised if either the initial value, or the discriminant or

bound values imposed by the constraint, fail to satisfy any constraint imposed by the type mark.

An object created by the execution of an allocator remains allocated for as long as this object is

accessible directly or indirectly, that is, as long as it can be designated by some name. When such

an object becomes inaccessible, the storage it occupies can be reclaimed (but need not be),

depending on the implementation.

When an application needs closer control over storage allocation for objects of an access type,

such control may be achieved by one or more of the following means.

(a) The total amount of storage available for the collection of objects of an access type can be set

by means of a length specification (see 13.2).

(b) The pragma CONTROLLED informs the implementation that automatic storage reclamation

should not be performed except upon leaving the scope of the access type definition. The

form of this pragma is as follows

pragma CONTROLLED (access_type_name);

The position of a CONTROLLED pragma is governed by the same rules as for a representation

specification (see 13.1). This pragma cannot be used for a derived type.

(c) Explicit deallocation of individual access objects may be done by calling a procedure obtained

by instantiation of the predefined generic library procedure UNCHECKED_DEALLOCATION
(see 13.10.1).

The exception STORAGE_ERROR is raised by an allocator if there is not enough storage.

Examples-.

new CELL(0, null, null)

new CELL(VALUE => 0, SUCC => null, PRED => null)

new MATRIX) 1 .. 10, 1 .. 20) -- not initialized

new MATRIX) 1 .. 10 => (1 .. 20 => 0.0)) - initialized

new BUFFER(IOO) -- constrained

new BUFFER(SIZE => 100, POS => 0, VALUE => (1 .. 100 => 'A'))

4 - 23

MIL-STD-1815

10 December 1980 Ada Reference Manual

References :

access value 3.8, aggregate 4.3, bounds 3.6.1, component 3.2, discriminant constraint 3.7.2, expression
4.4, index constraint 3.7.1, type declaration 3.3, type mark 3.3, unconstrained array type 3.6

4.9 Static Expressions

Static expressions are defined in terms of their possible constituents. Every constituent of a static
expression must be one of the following:

(a) a literal or a literal expression

(b) an aggregate whose components and choices are static expressions; if the choice others
occurs it must correspond to a static range

(c) a constant initialized by a static expression

(d) a predefined operator, a membership test, the predefined function ABS, or a short circuit con-
trol form

(e) an attribute whose value is static; for attributes that are function names, the arguments must
also be static expressions

(f) a qualified static expression or the result of a type conversion applied to a static expression,
provided that any constraint imposed by the type mark is static

(g) a selected component of a record constant initialized by a static expression

(h) an indexed component of an array constant initialized by a static expression, where the indices
are static expressions

Static expressions must be evaluated at compilation time when they appear in a construct in

which a static expression is required by the rules of the language. If compile time analysis of such a
static expression shows that its evaluation will raise an exception then the static expression must
be replaced by code that raises the exception.

References'.

a99 regate 4.3, attribute 3.3, component 3.2, constant 3.2, constraint 3.3, exception 1 1, function 6.1 6.4
6.5, indexed component 4.1.1, literal 2.4 3.2 4.2, operator 4.5, qualified expression 4.7, type conversion
4.6

4 24

Names and Expressions MIL-STD-1815

10 December 1980

4.10 Literal Expressions

Literal expressions are defined in terms of their possible primary constituents and operators. A
primary in a literal expression must be either a numeric literal, a name of a numeric literal, a call of

the predefined function ABS, or a literal expression enclosed in parentheses. The value of a literal

expression is of the type' universaljnteger if all its primaries are of this type, otherwise it is of the

type universaljeaL

The only operators allowed in a universal integer literal expression are the predefined operators

which take operands of integer type.

The only operators allowed in a universal real literal expression are as follows:

® The unary operators +, and -, the function ABS, and the binary operators +, -, *, and /, for

universal real operands

• Multiplication of a universal real value by a universal integer value and vice versa.

® Division and exponentiation with a universal real first operand and universal integer second
operand

The relational operators are also available with universal real operands and deliver a BOOLEAN
result.

The evaluation of a literal expression must deliver a result that is at least as accurate as the most
accurate numeric type supported by the implementation.

Examples :

1 + 1 -2
ABS(-1 0)*3 - 30

KILO : constant := 1000;
MEGA : constant := KILO* KILO;
LONG : constant := FLOAT'DIGITS*2;

HALF_PI ; constant := PI/2;

DEG._TO_RAD : constant := HALF_PI/1 80;
RAD_TO_DEG : constant := 1 .0/DEG_T0_RAD; - equivalent to (1.0/(((3.141 59_26536)/2)/1 80))

References'.

abs function 4.5.7, expression 4.4, integer type 3.5.4, name of numeric literal 3.2, numeric literal 2.4.

operator 4.5, primary 4.4, relational operator 4.5.2, universal integer type 2.4 3.2 3.5.4, universal real type

2.4 3.2 3.5.6

4 - 25

MIL-STD-1815

10 December 1980

5. Statements

The execution of statements causes actions to be performed.

This section describes the general rules applicable to all statements. Some specific statements are

discussed in later chapters: Procedure calls are described in Chapter 6 on subprograms. Entry cal-

ls, delay, accept, select, and abort statements are described in Chapter 9 on tasks. Raise state-

ments are described in Chapter 1 1 on exceptions and code statements in Chapter 13. The remain-

ing forms of statements are presented here.

References :

abort statement 9.10, accept statement 9.5, code statement 13.8, delay statement 9.6, entry call 9.5,

procedure call 6.4, raise statement 11.3

5.1 Simple and Compound Statements - Sequences of Statements

A statement may be simple or compound. A simple statement contains no other statement. A
compound statement may contain simple statements and other compound statements.

sequence_of_statements statement {statement}

statement

{ label} simple_statement
|

{label} compound_statement

simple_statement ::= nulLstatement
assignment_statement
return_statement

procedure_call

delay_statement

raise_statement

|
exit_statement

j
goto_statement

I
entry_call

j
abort_statement

j
code_statement

compound_statement ::=

if_statement

|
loop_statement

j
accepLstatement

|
case_statement

|
block

j
selecLstatement

label <<identifier>>

nulLstatement ::= null;

A statement may be labeled with an identifier enclosed by double angle brackets. Labels are

implicitly declared at the end of the declarative part of the innermost enclosing subprogram body,
package body, or task body. Consequently, within the sequence of statements of a subprogram,
package, or task body, any two labels given for the same statement or for different statements
must have different identifiers.

5 - 1

MIL-STD-1815

10 December 1980

Ada Reference Manual

The implicit declarations for different labels, loop identifiers and block identifiers are assumed to
occur in the same order as the beginnings of the labeled statements, loop statements and blocks
themselves.

Execution of a null statement has no other effect than to pass to the next action.

The statements in a sequence of statements are executed in succession unless an exception is

raised or an exit, return, or goto statement is executed.

Examples of labeled statements:

<<AFTER>> null;

<<THERE>> <<LA>> <<DORT>> null;

References

:

abort statement 9.10, accept statement 9.5, assignment statement 5.2, block 5.6, case statement 5.4,

code statement 13.8, delay statement 9.6, exception 1 1, exit statement 5.7, goto statement 5.9, if state-
ment 5.3, loop statement 5.5, package body 7.1 7.3, procedure 6, raise statement 1 1.3, return statement
5.8, select statement 9.7, subprogram body 6.3, task body 9.1

5.2 Assignment Statement

An assignment statement replaces the current value of a variable with a new value specified by an
expression. The named variable and the right hand side expression must be of the same type.

assignment_statement ::=

variable_name := expression;

For the execution of an assignment statement, the expression of the right hand side, and any
expression used in the specification of the variable name are first evaluated. The value of the
expression must satisfy any range, index, or discriminant constraint applicable to the variable;

then the value of the expression is assigned to the variable. Otherwise the exception
CONSTRAINT_ERROR is raised.

Examples:

VALUE := MAX_VALUE - 1;

SHADE := BLUE;

NEXT_FRAME(F)(M, N) := 2.5;

U := DOT_PRODUCT(V, W);

WRITER := (STATUS => OPEN, UNIT => PRINTER, LINE_COUNT => 60);

NEXT_CAR.all := (72074, null);

5 - 2

Statements
MIL-STD-1815

10 December 1980

Examples of constraint checks:

1, J : INTEGER range 1 .. 10;

K INTEGER rang® 1 .. 20;

1 := J; identical ranges

K := J; compatible ranges

J :=

Notes:

K; will raise the exception CONSTRAINT_ERROR if K > 10

The language does not define whether evaluation of the expression on the right hand side

precedes, follows, or is concurrent with that of any expression used in the specification of the
variable name. A program that relies on a specific order is therefore erroneous.

The discriminants of an object designated by an access value cannot be altered (even by a com-
plete object assignment) since such objects, created by allocators, are always constrained (see

4.8).

References:

access value 3.8, allocator 4.8, constraint_error exception 11.1, discriminant 3.7.1, discriminant constraint

3.7.2, expression 4.4, index constraint 3.6, name 4.1, range constraint 3.5, variable 3.2

5.2.1 Array Assignments

For an assignment to an array variable (including assignment to a slice), each component of the

array value is assigned to the matching component of the array variable. For each component of

either the array value or the array variable, there must be a matching component in the other array.

Otherwise, no assignment is performed and the exception CONSTRAINT_ERROR is raised.

Examples:

A : STRINGd .. 31);

B : STRING(3 .. 33);

A := B; -- same number of components

A(1 .. 9) := "tar sauce";

A(4 .. 12) := A(1 .. 9); -- A(1 .. 12) = "tartar sauce"

Notes:

Array assignment is defined even in the case of overlapping slices, because the expression on the
right hand side is evaluated before performing any component assignment. In the above example,
an implementation yielding A(1 .. 12) = "tartartartar" would be incorrect.

References:

array component 3.6, array value 3.6, array variable 3.2 3.6, assignment statement 5.2, constraint_error
exception 11.1, expression 4.4, matching components 4.5.2, slice 4.1.2

5 - 3

MIL-STD-1815

10 December 1980
Ada Reference Manual

5.3 If Statements

\n if statement selects for execution one or none of a number of sequences of statements,

Jepending on the truth value of one or more corresponding conditions. The expressions specifying

conditions must be of the predefined type BOOLEAN.

if_statement ::=

if condition than

sequence_of_statements

I elsif condition then

sequence_of_statements}

[else

sequence_of_statements]

end if;

condition ::= booleanjaxpression

For the execution of an if statement the condition specified after if and any conditions specified

after elsif are evaluated in succession (treating a final else as elsif TRUE then), until one evaluates

to TRUE; then the corresponding sequence of statements is executed. If none of the conditions

evaluates to TRUE, none of the sequences of statements is executed.

Examples'.

if MONTH = DECEMBER and DAY = 31 then

MONTH := JANUARY;
DAY := 1

;

YEAR ;= YEAR + 1;

end if;

if INDENT then

CHECK_LEFT_MARGIN;
LEFT-SHIFT;

elsif OUTDENT then

RIGHT-SHIFT;
qIsq

CARRIAGE-RETURN;
CONTINUE_SCAN;

end if;

if MY-CAR.OWNER.VEHICLE /= MY_CAR then

FAIL ("INCORRECT RECORD");
end if;

References'.

boolean type 3.5.3, boolean expression 3.5.3 4.4, sequence of statements 5.1 , true 3.5.3, truth value 3.5.3

5 4

Statements MIL-STD-1815

10 December 1980

5.4 Case Statements

A case statement selects for execution one of a number of alternative sequences of statements,
depending on the value of an expression. The expression must be of a discrete type.

case_statement ::=

case expression is

{when choice {| choice) => sequence_of_statements)

end case;

Each alternative sequence of statements is preceded by a list of choices (see 3.7.3) specifying the
values for which the alternative is selected. The type of the expression must be known
independently of the context (for example, it cannot be an overloaded literal). Each value of the
subtype of the expression, if this subtype is static, otherwise each value of the type of the expres-
sion, must be represented once and only once in the set of choices of a case statement. The choice
others may only be given as the choice for the last alternative, to cover all values (possibly none)
not given in previous choices. The values specified by choices given in a case statement must be
determinable statically.

Examples:

case SENSOR is

when ELEVATION => RECORD_ELEVATION (SENSOR_VALUE);
when AZIMUTH => RECORD_AZIMUTH (SENSOR_VALUE);
when DISTANCE => RECORD_DISTANCE (SENSOR_VALUE);
when others => null;

end case;

case TODAY is

when MON => COMPUTE_INITIAL_BALANCE;
when FRI => COMPUTE_CLOSING_BALANCE;
when TUE .. THU => GENERATE_REPORT(TODAY);
when SAT .. SUN => null;

end case;

case BIN_NUMBER(COUNT) is

when 1 => UPDATE_BIN(1);

when 2 => UPDATE_BIN(2);
when 3 |

4 =>
EMPTY_BIN(1);
EMPTY_BIN(2);

when others => raise ERROR;
end case;

Notes:

The execution of a case statement will choose one and only one alternative, since the choices are
exhaustive and mutually exclusive. It is always possible to use a qualified expression for the
expression of the case statement to limit the number of choices that need be given explicitly.

References:

discrete type 3.5, expression 4.4, literal 2.5 3.2. 5.2, overloading a subprogram 6.6, sequence of statements
5.1, static determination 4.9

5 - 5

MIL-STD-1815

10 December 1980 Ada Reference Manual

5.5 Loop Statements

A loop statement specifies that a sequence of statements in a basic loop is to be executed

repeatedly zero or more times.

loop_statement ::=

[/oop identifier:] [iteration_clause] basic-loop [/oop_identifierj;

basic_loop ::=

loop

sequence_of_statements
end loop

iteration_clause ::=

for loop_para meter in [reverse] discrete_range

|
while condition

loop_parameter ::= identifier

If a loop identifier appears in a loop statement, the identifier must be given both at the beginning

and at the end. A loop identifier is implicitly declared at the end of the declarative part of the inner-

most enclosing block, subprogram body, package body, or task body; where this block has no
declarative part, an implicit declarative part (and preceding declare) is assumed.

A loop statement without an iteration clause specifies repeated execution of the basic loop. The
basic loop may be left as the result of an exit or return statement; as the result of selecting a ter-

minate alternative of a select statement; or also as the result of a goto statement, or as the result

of an exception.

In a loop statement with a while iteration clause, the condition is evaluated and tested before each
execution of the basic loop. If the while condition is TRU E the sequence of statements of the basic

loop is executed, if FALSE the execution of the loop statement is terminated.

The execution of a loop statement with a for iteration clause starts with the elaboration of this

clause, which acts as the declaration of the loop parameter. The identifier of the loop parameter is

first introduced and the discrete range is then evaluated; the loop parameter is declared as a

variable, local to the loop statement, whose type is that of the elements in the discrete range and
whose range constraint is given by the discrete range. If the discrete range is a range whose
bounds are integer literals or integer literal expressions, the type is assumed to be the predefined

type INTEGER.

If the discrete range of a for loop is null, the basic loop is not executed. Otherwise, the sequence of

statements of the basic loop is executed once for each value of the discrete range (subject to the

basic loop not being left as described above). Prior to each such iteration, the corresponding value

of the discrete range is assigned to the loop parameter. These values are assigned in increasing

order unless the reserved word reverse is present, in which case the values are assigned in

decreasing order.

Within the basic loop, the loop parameter acts as a constant. Hence the loop parameter may not

be changed by an assignment statement, nor may the loop parameter be given as an out or in out

parameter of a procedure or entry call.

5 - 6

Statements MIL-STD-1815

10 December 1980

Examples:

while BID(N).PRICE < CUT_OFF.PRICE loop
RECORD_BID(BID(N). PRICE);

N := N + 1;

end loop;

SUMMATION:
while NEXT /= HEAD loop

SUM := SUM + NEXT.VALUE;
NEXT := NEXT.SUCC;

end loop SUMMATION;

for J in BUFFER'RANGE loop -- valid even with empty range
if BUFFER(J) /= SPACE then

PUT(BUFFER(J»;
end if;

end loop;

Notes:

The discrete range of a for loop is evaluated just once. Loop names can be referred to by exit

statements.

References:

assignment statement 5.2, block 5.6, bounds 3.6, condition 5.3, discrete range 3.6, elaboration 3.1 3.9,

entry call 9.5, exception 11, exit statement 5.7, false 3.5.3, goto statement 5.9, identifier 2.3, in out
parameter 6.2, integer literal 2.4, integer type 3.5.4, name 4.1, null range 3.6.1, out parameter 6.2,

package body 7.1 7.3, procedure 6.1, range attribute 3.6.2, return statement 5.8, sequence of statements
5.1, subprogram body 6.3, task body 9.1, terminate alternative 9.7.1, true 3.5.3, variable 4.1

5.6 Blocks

A block introduces a sequence of statements optionally preceded by a governing declarative part.

block ::=

[6/oc/r_identifier:j

[declare

declarative_part]

begin

sequence_of_statements

[exception

[exception_handler[]

end [6/oc/r identifier];

If a block identifier is given for a block, it must be given both at the beginning and at the end. A
block identifier is implicitly declared at the end of the declarative part of the innermost enclosing

block, subprogram body, package body, or task body; where this enclosing block has no
declarative part, an implicit declarative part (and preceding declare) is assumed.

The execution of a block results in the elaboration of its declarative part followed by the execution

of the sequence of statements. A block may also contain exception handlers to service exceptions

occurring during the execution of the sequence of statements (see 11.2).

5 - 7

MIL-STD-1815
10 December 1980 Ada Reference Manual

Example:

SWAP:
declare

TEMP : INTEGER;
begin
TEMP := V; V := U; U := TEMP;

end SWAP;

Notes :

Within a block, the block name can be used in selected components denoting local entities such as

SWAP.TEMP in the above example (see 4.1.3 (e)).

References-.

declarative part 3.9, elaboration 3.1 3.9, exception 1 1, exception handler 1 1.2, name 4.1, package body
7.1 7.3, sequence of statements 5.1, subprogram body 6.3, task body 9.1

5.7 Exit Statements

An exit statement may cause the termination of an enclosing loop, depending on the truth value of

a condition.

exit_statement ::=

exit [loopname] [when condition);

The loop exited is the innermost loop unless the exit statement specifies the name of an enclosing

loop, in which case the named loop is exited (together with any enclosing loop inner to the named
loop). If an exit statement contains a condition, this condition is evaluated and loop termination

occurs if and only if its value is TRUE.

An exit statement may only appear within a loop (a named exit statement only within the named
loop). An exit statement must not transfer control out of a subprogram body, package body, task

body, or accept statement.

Examples-.

for I in 1 .. MAX_NUM_ITEMS loop

GET_NEW_ITEM (NEW_ITEM) ;

MERGE_ITEM(NEW_ITEM, STORAGE_FILE);
exit when NEWJTEM = TERMINAL-ITEM;

end loop;

MAIN_CYCLE:
loop

initial statements

exit MAIN_CYCLE when FOUND;
-- final statements

end loop MAIN_CYCLE;

5 - 8

Statements MIL-STD-1815

10 December 1980

References :

condition 5.3, loop statement 5.5, name 4.1, true 3.5.3, truth value 3.5.3

5.8 Return Statements

A return statement terminates the execution of a function, procedure, or accept statement.

return_statement ::= return [expression];

A return statement may only appear within a function body, procedure body, or accept statement.
A return statement for a procedure body or for an accept statement must not include an expres-
sion.

A return statement for a function must include an expression whose value is the result returned by
the function. The expression must be of the type specified in the return clause of the function
specification, and must satisfy any constraint imposed by the return clause. Otherwise, the execu-
tion of the function is not terminated and the exception CONSTRAINT_ERROR is raised at the
place of the return statement.

A return statement must not transfer control out of a package body or task body.

Examples'.

return;

return KEY_VALUE(LAST_INDEX);

References'.

accept statement 9.5, constraint 3.3, constraint-error exception 11.1, expression 4.4, function 6.1, func-
tion body 6.3, function specification 6.1, package body 7.1 7.3, procedure 6.1, procedure body 6.3,

sequence of statements 5.1, task body 9.1

5.9 Goto Statements

The execution of a goto statement results in an explicit transfer of control to another statement

specified by a label.

goto_statement ::= goto label_name;

A goto statement must not transfer control from outside into a compound statement or exception

handler, nor from one of the sequences of statements of an if statement, case statement, or select

statement to another. A goto statement must not transfer control from one exception handler to

another, nor from an exception handler back to the statements of the corresponding block, sub-

program body, package body, or task body.

A goto statement must not transfer control out of a subprogram body, package body, task body, or

accept statement.

5 - 9

MIL-STD-1815

10 December 1980 Ada Reference Manual

Example

:

<<COMPARE>>
if A(l) < ELEMENT then

if LEFT(I) /= 0 then

I := LEFT(I);

goto COMPARE;
end of;

-- some statements

end if;

Notes:

It follows from the scope rules that a goto statement cannot transfer control from outside into the

body of a subprogram, package, or task (see 5.1 and 8.1).

References :

accept statement 9.5, block 5.6, case statement 5.4, compound statement 5.1, exception handler 1 1.2, if

statement 5.3, label 5.1, package body 7.1 7.3, scope rules 8, select statement 9.7, sequence of state-

ments 5.1, subprogram body 6.3, task body 9.1

MIL-STD-1815

10 December 1980

6. Subprograms

A subprogram is an executable program unit that is invoked by a subprogram call. Its definition
can be given in two parts: a subprogram declaration defining its calling convention, and a sub-
program body defining its execution. There are two forms of subprograms: procedures and func-
tions. A procedure call is a statement; a function call returns a value.

Subprograms are one of the three forms of program units of which programs can be composed.
The other forms are packages and tasks.

References'.

function 6.1 6.5, function call 6.4, procedure 6.1 procedure call 6.4, subprogram body 6.3, subprogram call
6.4, subprogram declaration 6.1

6.1 Subprogram Declarations

A subprogram declaration declares a procedure or a function.

subprogram_declaration ::= subprogram_specification;

|
generic_subprogram_declaration

|
generic_subprogram_instantiation

subprogram_specification ::=

procedure identifier [formaLpart]

|
function designator [formaLpart] return subtype_indication

designator ::= identifier
|
operator_symbol

operator_symbol ::= character_string

formaLpart ::= (parameter_declaration {; parameter_declaration})

parameter-declaration ::=

identifier-list : mode subtype_indication [:= expression]

mode [in]
|
out

|
in out

The specification of a procedure specifies its identifier and its formal parameters (if any). The
specification of a function specifies its designator, its formal parameters (if any) and the subtype of
the returned value. A designator that is an operator symbol is used for overloading operators of
the language. The sequence of characters represented by an operator symbol must be an operator
belonging to one of the six classes of overloadable operators defined in section 4.5.

6 - 1

MIL-STD-1815

10 December 1980
Ada Reference Manual

For the elaboration of a subprogram declaration (other than a generic subprogram declaration or a

generic subprogram instantiation), the subprogram identifier (or operator symbol) is first

introduced and can from then on be used as a name of the corresponding subprogram. Elaboration

of parameter declarations and result subtype follow in the order in which they are written.

For the elaboration of a parameter declaration, the identifiers of the list are first introduced; then

the mode and parameter subtype are established; the identifiers then name the corresponding

parameters. If the parameter declaration has the mode in, and only then, it may include an

initialization. In that case, the corresponding expression is next evaluated. Its value is the default

initial value of the parameter; it must satisfy any constraint imposed by the subtype indication,

otherwise the exception CONSTRAINT_ERROR is raised.

Neither the name of a variable, nor a call to a user-defined operator, function, or allocator, may
appear in any expression occurring in a formal part. A parameter declaration, or a constraint on the

result of a function, may not mention the name of a parameter declared in another parameter

declaration of the same formal part.

A generic subprogram declaration defines a template for several subprograms obtained by generic

subprogram instantiation (see 12.1 and 12.3).

Examples of subprogram declarations'.

procedure TRAVERSE_TREE;
procedure RIGHTJNDENT(MARGIN : out LINE_POSITION);

procedure INCREMENTS : in out INTEGER);

function RANDOM return REAL range -1.0 .. 1.0;

function COMMON_PRIME (M,N : INTEGER) return INTEGER;

function DOT_PRODUCT (X,Y : VECTOR) return REAL;

function (X,Y : MATRIX) return MATRIX;

Examples of in parameters with default values :

procedure PRINT_HEADER(PAGES
HEADER
CENTER

in INTEGER;
in LINE

in BOOLEAN
BLANK_LINE;
TRUE);

Note'.

All subprograms can be called recursively and are reentrant.

References'.

constraint 3.3, constraint_error exception 11.1, expression 4.4, formal parameter 6.2, function 6.5, function

call 6.4, generic part 12.1, operator 4.5, overloading an operator 6.7, procedure call 6.4, subtype declara-

tion 3.3, variable name 3.2 4.1

6 - 2

Subprograms
MIL-STD-1815
10 December 1980

6.2 Formal Parameters

The formal parameters of a subprogram are considered local to the subprogram. A parameter has
one of three modes:

in The parameter acts as a local constant whose value is provided by the
corresponding actual parameter.

out The parameter acts as a local variable whose value is assigned to the
corresponding actual parameter as a result of the execution of the
subprogram.

in out The parameter acts as a local variable and permits access and assignment
to the corresponding actual parameter.

If no mode is explicitly given, the mode in is assumed. If a parameter of mode in is an array or a
record, none of its components may be changed by the subprogram. For parameters of a scalar or
access type, at the start of each call, the value of each actual parameter which corresponds to a
formal parameter of mode in or in out is copied into the corresponding formal parameter; upon
return from the subprogram, the value of each formal parameter of mode in out or out is copied
back into the corresponding actual parameter.

For parameters of an array, record, or private type, the values may be copied as in the above case;
alternatively, the formal parameter may provide access to the corresponding actual throughout the
execution of the subprogram. The language does not define which of these two mechanisms is

used for parameter passing. A program that relies on one particular mechanism is therefore
erroneous.

Within the body of a subprogram, a formal parameter is subject to any constraint given in its

parameter declaration. For a formal parameter of an unconstrained array type, the bounds are
obtained from the actual parameter. For a formal parameter whose declaration specifies an
unconstrained (private or record) type with discriminants, the discriminants of the formal
parameter are initialized with the values of the corresponding discriminants of the actual
parameter; if the actual parameter is constrained by these discriminant values then so also is the
formal.

Notes:

For parameters of array, record, or private types, the parameter passing rules have these conse-
quences:

• If the execution of a subprogram is abnormally terminated by an exception, the final value of
an actual parameter of such a type can be either its value before the call or a value assigned to
the formal parameter during the execution of the subprogram.

• If no actual parameter of such a type is accessible by more than one path, then the effect of a
(normally terminating) subprogram call is the same whether or not the implementation uses
copying for parameter passing. If however there are multiple access paths to such a
parameter (for example, if a global variable, or another formal parameter, refers to the same
actual parameter), then after an assignment to the actual other than via the formal, the value
of the formal is undefined. A program using such an undefined value is erroneous.

6 - 3

MIL-STD-1815
10 December 1980 Ada Reference Manual

References :

access type 3.8, actual parameter association 6.4,1, array type definition 3.6, bounds 3.6.1, component
3.2, constant 3.2, constraint 3.3, discriminant 3.7.1, discriminant constraint 3.7.2, exception 11, global

variable 8.3, private type 7.4, record type 3.7, scalar type 3.5, subprogram body 6.3, subprogram call 6.4,

unconstrained array type 3.6

6.3 Subprogram Bodies

A subprogram body specifies the execution of a subprogram.

subprogram_body ::=

subprogram_specification is

declarative_part

begin

sequence_of_statements

[exception

|exception_handier}]

end [designator);

If both a subprogram declaration and a subprogram body are given, the subprogram specification

provided in the body must be the same as that given in the corresponding subprogram declaration:

the parameter names, the subtype indications, and the expressions specifying any default values

must be the same and in the same order. The only variation allowed is that names can be written

differently, provided that they denote the same entity.

A subprogram declaration must be given if the subprogram is declared in the visible part of a

package, or if it is called by other subprogram, package, or task bodies that appear before its own
body. Otherwise, the declaration can be omitted and the specification appearing in the sub-

program body acts as the declaration. The elaboration of a subprogram body consists of the

elaboration of its specification if that has not already been done; the effect is to establish the sub-

program body as defining the execution of the corresponding subprogram.

The execution of a subprogram body is invoked by a subprogram call (see 6.4). For this execution,

(after establishing the association between formal parameters and actual parameters) the

declarative part of the body is elaborated, and the sequence of statements of the body is then

executed. Upon completion of the body, return is made to the caller (and any necessary copying

back of formal to actual parameters occurs (see 6.2)). A subprogram body may contain exception

handlers to service any exceptions that occur during the execution of its sequence of statements

(see 1 1).

The optional designator at the end of a subprogram body must repeat the designator of the sub-

program specification.

A subprogram body may be expanded in line at i ich call if this is requested by the pragma INLINE:

pragma IN LI HE(subprogram_r\ame\.subprogram_r\ame \)

;

This pragma (if given) must appear in the same declarative part as the named subprograms (a

single subprogram name may stand for several overloaded subprograms); for subprograms
declared in a package specification the pragma must also be in this package specification. The
meaning of a subprogram is not changed by the pragma INLINE.

6 - 4

Subprograms MIL-STD-1815
10 December 1980

Example of subprogram body.

procedure PUSH(E : in ELEMENT_TYPE; S : in out STACK) is

begin

if S.INDEX = S.SIZE then
raise STACK_OVERFLOW;

else

S.INDEX := S.INDEX + 1;

S.SPACE(S.INDEX) := E;

end if;

end PUSH;

Note-.

As stated above, where a subprogram specification is repeated, the second occurrence is never
elaborated. Therefore there is no question of expressions in the second occurrence delivering a dif-

ferent value.

References-.

actual parameter association 6.4.1, declarative part 3.9, default parameter value 6.1, designator 6.1,
exception 1 1, formal parameter 6.2, mode 6.2, package body 7.1 7.3, package specification 7.2, package
visible part 7.2, parameter association 6.4.1, parameter name 6.2, pragma 2.8, statement 5, subprogram
declaration 6.1, subprogram specification 6.1, subtype indication 3.3, task body 9.1

6.4 Subprogram Calls

A subprogram call is either a procedure call or a function call. It invokes the execution of the cor-
responding subprogram body. The call specifies the association of any actual parameters with for-
mal parameters of the subprogram. An actual parameter is either a variable or the value of an
expression.

procedure_call ::=

procedure_name [actuaLparameter_part];

function_call ::=

function_name actual_parameter_part
|
function_name ()

actuaLparameter_part ::=

(parameter_association parameter_association|)

parameter_association ::=

[formaLparameter =>] actuaLparameter

formaLparameter ::= identifier

actuaLparameter ::= expression

6 - 5

MIL-STD-1815

10 December 1980

Ada Reference Manual

Actual parameters may be passed in positional order (positional parameters) or by explicitly nam-

ing the corresponding formal parameters (named parameters). For positional parameters, the

actual parameter corresponds to the formal parameter with the same position in the formal

parameter list. For named parameters, the corresponding formal parameter is explicitly given in the

call. Named parameters may be given in any order.

Positional parameters and named parameters may be used in the same call provided that

positional parameters occur first at their normal position, that is, once a named parameter is used,

the rest of the call must use only named parameters.

The call of a parameterless function is written as the function name followed by empty

parentheses. This is also done for a function call in which default initial values are used for all

parameters. The call of a parameterless procedure is written as the procedure name followed by a

semicolon.

Examples of procedure calls'.

RIGHT_SHIFT;
TABLE_MANAGER.INSERT! E);

SEARCH_STRING(STRING, CURRENT_POSITION, NEW_POSITION);

PRINT_HEADER(PAGES => 128, HEADER => TITLE, CENTER => TRUE);

SWITCH(FROM => X, TO => NEXT);

REORDER_KEYS(NUMBER_OF_ITEMS, KEY_ARRAY => RESULT_TABLE);

Examples of function calls ;

DOT_PRODUCT(U, V)

CLOCK0

References'.

default parameter value 6.1 ,
expression 4.4, function 6.1 6.5, identifier 2.3, name 4.1

,
procedure 6.1 , sub-

program body 6.3, variable 3.2 4.1

6.4.1 Actual Parameter Associations

An expression used as an actual parameter of mode in out or out must be a variable name or a type

conversion of a variable name (see 4.6). An expression used as an actual parameter of mode in is

evaluated before the call. If a variable given as an actual parameter of mode in out or out is a

selected component or an indexed component, its identity is established before the call.

For a parameter of a scalar type, if the mode is in or in out, any range constraint on the formal

parameter must be satisfied by the value of the actual parameter before each call. If the mode is in

out or out, any range constraint on the actual parameter must be satisfied by the value of the for-

mal parameter upon return from the subprogram.

For a parameter of an access type the only possible constraints are index and discriminant con-

straints applying to the objects designated by the access values. These constraints must be

satisfied (that is, are checked) before the call (for the modes in and in out) and upon return (for the

modes in out and out).

6 - 6

Subprograms MIL-STD-1815

10 December 1980

For a parameter of an array type, or of a record or private type with discriminants, any constraint
specified for the formal parameter must be satisfied by the corresponding actual parameter before
the call for all parameter modes.

The exception CONSTRAINT_ERROR is raised at the place of the subprogram call if any of the
above-mentioned constraints is not satisfied.

Notes:

For array types, and for record and private types with discriminants, the language rules guarantee
that if the actual parameter satisfies the constraint of the formal parameter before the call, then
the formal parameter satisfies the constraint of the actual parameter upon return. Hence no con-
straint check is needed upon return.

The language does not define in which order different parameter associations are evaluated. A
program relying on some specific order is therefore erroneous.

References

:

access type 3.8, access value 3.8, array type definition 3.6, constraint_error exception 1 1.1, discriminant
3.7.1, discriminant constraint 3.7.2, expression 4.4, indexed component 4.1.1, mode 6.2, object 3.2,
private type definition 7.4, range constraint 3.5, record type 3.7, scalar type 3.5, selected component 4. 1 .3^
variable name 3.2 4.1

6.4.2 Default Actual Parameters

if a subprogram declaration specifies a default value for an in parameter, then the corresponding
parameter may be omitted from a call. In such a case the rest of the call, following any initial

positional parameters, must use only named parameters.

Example of procedure with default values:

procedure ACTIVATE! PROCESS : in PROCESS_NAME;
AFTER : in PROCESS_NAME := NO_PROCESS;
WAIT : in DURATION := 0.0;
PRIOR : in BOOLEAN := FALSE);

Examples of its call:

ACTIVATE(X);
ACTIVATED, AFTER => Y);

ACTIVATED, WAIT => 60.0, PRIOR => TRUE);
ACTIVATED, Y, 10.0, FALSE);

Note:

The default value for an in parameter is evaluated when the subprogram specification is elaborated
and is thus not reevaluated at each call. Hence the same default value is used for all calls.

6 - 7

MIL-STD-1815

10 December 1980 Ada Reference Manual

References :

default parameter value 6.1, named parameter 6.4, subprogram specification 6.1

6.5 Function Subprograms

A function is a subprogram that returns a value. The specification of a function starts with the

reserved word function. A function may only have parameters of the mode in. The sequence of

statements in the function body (excluding statements in nested bodies) must include one or more
return statements specifying the returned value. If the body of a function is left by reaching the

end, the value returned by the function call is undefined. A program that relies upon such an

undefined value is erroneous.

Example :

function DOT_PRODUCT(X, Y : VECTOR) return REAL is

SUM : REAL := 0.0;

begin
CHECK(X'FIRST = Y' FIRST and X'LAST = Y'LAST);

for J in X'RANGE loop

SUM := SUM + X(J)*Y(J);

end loop;

return SUM;
end DOT_PR0DU CT;

References :

exception 11, function body 6.3, function call 6.4, function specification 6.1, mode 6.2, parameter 6.2,

return statement 5.8

6.6 Overloading of Subprograms

The same subprogram identifier can be used in several otherwise different subprogram specifica-

tions; it is then said to be overloaded. The declaration of an overloaded subprogram identifier does

not hide another subprogram declaration made in an outer declarative part unless, in the two

declarations, the order, the names, and the types of the parameters are the same, the same

parameters have default values, and (for functions) the result type is the same. When this condition

for hiding is satisfied, the two subprogram specifications are said to be equivalent. On the other

hand the default values themselves, the constraints, and the parameter modes are not taken into

account to determine if one subprogram hides another.

Overloaded subprogram declarations may occur in the same declarative part, but they must then

differ by more than just the parameter names.

A call to an overloaded subprogram is ambiguous (and therefore illegal) if the types and the order

of the actual parameters, the names of the formal parameters (if named associations are used),

and the result type (for functions) are not sufficient to identify exactly one (overloaded) sub-

program specification.

6 - 8

Subprograms MIL-STD-1815
10 December 1980

Examples of overloaded subprograms

:

procedure PUT(X : INTEGER);
procedure PUT(X : STRING);

procedure SET(TINT : COLOR);
procedure SET(SIGNAL : LIGHT);

Example of calls

;

PUT(28);

PUTC'no possible ambiguity here");

SETfTINT => RED);
SETISIGNAL => RED);
SET(COLOR'IRED));

SET(RED) would be ambiguous since RED may
— denote a value of type either COLOR or LIGHT

Notes:

Ambiguities may (but need not) arise when actual parameters of the call of an overloaded sub-
program are themselves overloaded function calls, literals or aggregates. Ambiguities may also
arise when several overloaded subprograms belonging to different packages are applicable. These
ambiguities can usually be resolved in several ways: qualified expressions can be used for some or
all actual parameters and for any result; the name of the subprogram can be expressed more
explicitly as a selected component (prefixing the subprogram identifier by the package name);
finally the subprogram can be renamed.

References

:

actual parameter 6.4, constraints on parameters 6.4.1, declarative part 3.9, default parameter value 6.1,
function 6.5, hide 8.3, named parameter association 6.4, overloaded aggregate 4.3, overloaded literal 3.5.1
4.7, package 7, parameter type 6.1, qualified expression 4.7, renaming declaration 8.5, result type 6.1,
selected component 4.1.3, subprogram call 6.4, subprogram declaration 6.1, subprogram identifier 6.1,
subprogram specification 6.1

6.7 Overloading of Operators

A function declaration whose designator is an operator symbol is used to define an additional
overloading for an operator. The sequence of characters of the operator symbol must be either a
logical, a relational, an adding, a unary, a multiplying, or an exponentiating operator (see 4.5).
Neither membership operators nor the short circuit control forms are allowed.

The declaration of an overloaded operator hides the declaration of another operator, with the same
designator, made in an outer declarative part, if for both declarations the types of the parameters
are the same, and the result type is the same; the names of the parameters are not taken into
account.

6 - 9

MIL-STD-1815

10 December 1980 Ada Reference Manual

The declaration of a unary operator must be a function declaration with a single parameter. The
declaration of any other operator must be a function declaration with two parameters; for each use

of this operator, the first parameter takes the left operand as actual parameter, the second
parameter takes the right operand. Default values for parameters are not allowed in operator

declarations. The operators "+" and may be overloaded both as unary and as binary operators.

The equality operator "=" can only be overloaded for two parameters of the same limited private

type or of a composite type that has one or more components (or components of components,
and so on) of a limited private type. An overloading of equality must deliver a result of the

predefined type BOOLEAN; it also implicitly overloads the inequality operator "/=" so that this still

gives the complementary result to the equality operator. Explicit overloading of the inequality

operator is not allowed.

Examples :

function 'V' (X, Y : MATRIX) return MATRIX;
function "*" (X, Y ; VECTOR) return VECTOR;

Note-.

Overloading of relational operators does not affect basic comparisons in the language such as

testing for membership in a range or the choices in a case statement.

References'.

actual parameter 6.4, adding operator 4.5.3, boolean type 3.5.3, case statement 5.4, composite type 3.3,

declarative part 3.S, default parameter value 6.1, designator 6.1, equality operator 4.5.2, function declara-

tion 6.1 , hide 8.3, limited private type 7.4.2, mode 6.2, operator symbol 6.1
,
parameter type 6.1 , range 3.5,

relational operator 4.5.2, result type 6.1, unary operator 4.5.4

MIL-STD-1815

10 December 1980

7. Packages

Packages allow the specification of groups of logically related entities. In their simplest form
packages can represent pools of common data and type declarations. More generally, packages
can be used to describe groups of related entities such as types, objects, and subprograms, whose
inner workings are concealed and protected from their users.

Packages are one of the three forms of program units, of which programs can be composed. The
other forms are subprograms and tasks.

References'.

object 3.2, subprogram 6, task 9, type declaration 3.3

7.1 Package Structure

A package is generally provided in two parts: a package specification and a package body. The
simplest form of package, that representing a pool of data and types, does not require a package
body.

package_declaration package_specification;

|
generic_package_declaration

|
generic_package_instantiation

package_specification

package identifier is

|declarative_itemj

[
private

|declarative_item|

I representation__specification |]

end [identifier]

package_body ::=

package body identifier is

declarative_part

[begin

sequence_of_statements

[exception

^ |exception_handler|]]

end [identifier];

A package specification and the corresponding package body have the same identifier; only this
identifier may appear as the optional identifier at the end of the package specification or body (or
both).

7 - 1

MIL-STD-1815

10 December 1980
Ada Reference Manual

With respect to visibility and redeclaration rules (see 8.1), the declarative items and representation

specifications in a package specification and the declarative part of the corresponding package

body (if any) are considered as forming a single declarative part. A package declaration may be

separately compiled (see 10.1) or it may appear within a declarative part. In the latter case the

corresponding body (if any) must appear later in the same declarative part.

Package specifications and package bodies may contain further package declarations. The body of

any program unit (that is, any subprogram, package, or task) declared in a package specification

must appear in the corresponding package body (unless the unit declared is obtained by generic

instantiation or is a subprogram for which an INTERFACE pragma is given, see 13.9).

A generic package declaration defines a template for several packages obtained by generic

package instantiation (see 12.1 and 12.3).

References'.

declarative item 3.9, declarative part 3.9, generic instantiation 12.3, generic part 12.1, identifier 2.3,

program unit 6 7 9, redeclaration rules 8.2, representation specification 13.1, subprogram 6, task 9,

visibility 8.1

7.2 Package Specifications and Declarations

The first list of declarative items of a package specification is called the visible part of the

package. The entities declared in the visible part can be referred to from other program units by

means of selected components; they can be made directly visible to other program units by means

of use clauses (see 4.1.3 and 8.4). The visible part contains all the information that another

program unit is able to know about the package. The optional lists of declarative items and

representation specifications after the reserved word private form the private part of the package.

For the elaboration of a package declaration (other than a generic package declaration or a generic

package instantiation), the package identifier is first introduced and can from then on be used as a

name of the corresponding package; elaboration of the visible part, and of any declarative items

and representation specifications appearing after the reserved word private follow in this order.

A package consisting of only a package specification (that is, without a package body) can be used

to represent a group of common constants or variables, or a common pool of data and types.

Example of a group of common variables:

package PLOTTING_DATA is

PENJJP : BOOLEAN;

CONVERSION_FACTOR,
X_OFFSET, Y_OFFSET,
X_MIN, X_MAX,
Y_MIN, Y_MAX : REAL;

X_VALUE, Y_VALUE : array (1 .. 500) of REAL;

end PLOTTING_DATA;

7 - 2

Packages MIL-STD-1815
10 December 1980

Example of a common pool of data and types'.

package WORK_DATA is

type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);
type HOURS_SPENT is delta 0.01 range 0.0 .. 24.0;
type TIME_TABLE is array (DAY) of HOURS_SPENT;

WORK_HOURS : TIME_TABLE;
NORMAL-HOURS : constant TIME_TABLE :=

(MON .. THU => 8.25, FRI => 7.0, SAT
|
SUN => 0.0);

end WORK_DATA;

References'.

constant 3.2, declarative item 3.9, elaboration 3.1, generic package instantiation 12.3, generic part 12.1,
package specification 7.1, program unit 6 7 9, representation specification 1 3.1 , selected component 4.1.3,
separate compilation 10.1, type declaration 3.3, use clause 8.4, variable 3.2

7.3 Package Bodies

The specification of a package, in particular the visible part, may contain the specifications of sub-
programs, tasks and other packages. In such cases, the bodies of the specified program units must
appear within the declarative part of the package body (unless a pragma INTERFACE is given, see
13.9). This declarative part may also include local declarations and local program units needed to
implement the visible items.

In contrast to the entities declared in the visible part, the entities declared in the package body are
not accessible outside the package. As a consequence, a package with a package body can be
used for the construction of a group of related subprograms (a package in the usual sense), where
the logical operations accessible to the users are clearly isolated from the internal entities.

For the elaboration of a package body, its declarative part is elaborated first, and its sequence of
statements (if any) is then executed. Any entity declared in this declarative part remains in

existence for as long as the package itself.

The optional exception handlers at the end of a package body handle exceptions raised during the
execution of its sequence of statements.

Example of a package’.

package RATIONAL-NUMBERS is

type RATIONAL is

record

NUMERATOR : INTEGER;
DENOMINATOR : INTEGER range 1 .. INTEGER'LAST;

end record;

function EQUAL (X,Y : RATIONAL) return BOOLEAN;
function "+" (X,Y : RATIONAL) return RATIONAL;
function "*" (X,Y : RATIONAL) return RATIONAL;

end;

7 - 3

MIL-STD-1815

10 December 1980
Ada Reference Manual

package body RATIONAI NUMBERS is

procedure SAME_DENOMINATOR (X,Y : in out RATIONAL) is

begin

— reduces X and Y to the same denominator

end;

function EQUAL(X,Y : RATIONAL) return BOOLEAN is

U.V : RATIONAL;
begin

U := X;

V := Y;

SAME_DENOMINATOR (U,V);

return U.NUMERATOR = V.NUMERATOR;
end EQUAL;

function "+" (X,Y : RATIONAL) return RATIONAL is ... end

function (X,Y : RATIONAL) return RATIONAL is ... end "*";

end RATIONAI NUMBERS;

Notes:

A variable declared in a package specification or body retains its value between calls to sub-

programs declared in the visible part. Such a variable is said to be an own variable of the package.

If a package body contains the declarations of subprograms specified in the visible part then it is

only after the elaboration of the package body that these subprograms can be called from outside

the package (see 3.9 and 10.5).

References:

declarative part 3.9, elaboration 3.1, exception handler 11.2, exception 11, package specification 7.1,

sequence of statements 5.1, subprogram 6, task 9, variable 3.2, visible part 7.2

7.4 Private Type Definitions

The structural details of some declared type may be irrelevant to the use of its logical properties

outside a package, and one may wish to protect them from external influence. This can be

accomplished by declaring such a type with a private type definition in the visible part of a package

specification.

private_type_definition ::= [limited] private

A private type definition may only occur in a type declaration given in the visible part of a package

or in a generic part (see 12.1.2). The corresponding types are called (limited) private types. The

only effect of the elaboration of a private type declaration is to introduce the name of a (limited)

private type, and to elaborate its discriminant part, if any.

If a package specification includes a private type declaration it must also include a full declaration

of the type in the private part of the package (that is, in the list of declarative items following the

reserved word private).

7 - 4

Packages

MIL-STD-1815
10 December 1980

A constant of a private type can be declared in the visible part as a deferred constant, that is, as a

constant whose initial value is not specified in its declaration. The initial value must be specified in

the private part by redeclaring the constant in full.

References-.

constant 3.2, declarative item 3.9, discriminant part 3.3 3.7.1, elaboration 3.1, generic part 12.1, limited

private type 7.4.2, name 4.1, package specification 7.1, private part 7.2, type declaration 3.3, visible part

7.2

7.4.1 Private Types

For a private type not designated as limited, the only information available to other external

program units is that given in the visible part of the defining package. Thus the name of the type is

available. In addition, any subprogram specified within the visible part with a parameter or result of

the private type defines an available operation for objects of the private type. Finally, assignment
and the predefined comparison for equality or inequality are available.

These are the only externally available operations on objects of a private type. External units can
declare objects of the private type and apply available operations to the objects; in contrast, they
cannot directly access the structural details of objects of private types.

For each private type declaration given in the visible part of a package specification, a cor-

responding type declaration (with the same name) must be given in full in the private part, that is,

with a type definition other than a private type definition. Assignment and equality must be
available for this type.

If the private type declaration has discriminants, the full declaration must have the same discrimi-

nants: the discriminant names, the subtype indications, and any default values must be the same
and in the same order. The only variation allowed is that names may be written differently,

provided that they denote the same entity. The elaboration of the full type declaration consists only

of the elaboration of the corresponding type definition (since the type name has already been
introduced and any discriminant part has already been elaborated). The full type declaration cannot
include a discriminant part if the private type declaration does not have one; it cannot declare an
unconstrained array type.

Within the private part and the body of a package, the operations available on objects of the

private type are those defined in both the visible part and the private part. If the full declaration is

in terms of a derived type definition, an inherited operation may be redefined (and thereby hidden)

by an operation declared in the visible part.

Example-.

package KEY_MANAGER is

type KEY is private;

NULL_KEY : constant KEY;
procedure GET_KEY(K : out KEY);

function "<" (X, Y : KEY) return BOOLEAN;
private

type KEY is new INTEGER range 0 .. INTEGER'LAST;
NULI—KEY : constant KEY := 0;

end;

7 - 5

MIL-STD-1815

10 December 1980
Ada Reference Manual

the only externally available operations of the private type KEY are assignment,
-- equality, inequality, "<", and the procedure GET_KEY returning a KEY value

package body KEY_MANAGER is

LAST_KEY : KEY := 0;

procedure GET_KEY(K : out KEY) is

begin

LAST_KEY := LAST_KEY + 1;

K := LAST_KEY;
end GET_KEY;

function "<" (X, Y : KEY) return BOOLEAN is

begin

return INTEGER(X) < INTEGER(Y);
end

this definition of "<" hides the definition inherited from INTEGER; hence X<Y would
-- be a recursive call and conversion is necessary to invoke the "<" of INTEGER

end KEY_MANAGER;

Note :

Outside its defining package a private type is just a private type. The fact that it may be
implemented as a particular type class (for example, as an array type) is irrelevant. Consequently
any language rule which applies specifically to that class does not apply to that private type out-
side its defining package.

References

:

array type definition 3.6, assignment statement 5.2, derived type definition 3.4, discriminant 3.7.1 , elabora-
tion 3.1, equality 4.5.2, inherited 3.4, limited private type 7.4.2, name 4.1, parameter 6.2, private part 7.2,
subprogram 6, subtype indication 3.3, type class 3.3, type declaration 3.3, unconstrained array type 3.6,
visible part 7.2

7.4.2 Limited Private Types

Outside the package defining a limited private type, assignment and the comparisons for equality

or inequality are not available for objects of the type. Moreover if a composite type has compo-
nents of a limited private type, assignment, equality and inequality are not available for objects of

the composite type, outside the package defining the limited private type. The only externally

available operations on objects of a limited private type are those defined by the subprograms
declared in the visible part of the defining package.

The following are consequences of the non-availability of assignment:

• A declaration of a variable of a limited private type cannot include an initialization.

• Parameters of a limited private type may not have default values.

• No constant of a limited private type can be declared outside the defining package.

• An allocator for an access type designating objects of a limited private type is not allowed to

specify an initial value for the allocated object.

7 - 6

Packages

MIL-STD-1815
10 December 1980

Outside the defining package, subprograms having parameters of any mode can be defined for

objects of a limited private type, provided that the above rules are satisfied.

The type definition given in the full declaration of a limited private type need not (but may) define

a type for which assignment and equality are available; the full type declaration may be the

declaration of a task type.

Example:

In the example below, an external subprogram making use of l_0_PACKAGE may obtain a file

name by calling OPEN and later use it in calls to READ and WRITE. Thus, outside the package, a

file name obtained from OPEN acts as a kind of password; its internal properties (such as contain-

ing a numeric value) are not known and no other operations (such as addition or comparison of

internal names) can be performed on a file name.

package l_0_PACKAGE is

type FILE_NAME is limited private;

procedure OPEN (F : in out FILE_NAME);
procedure CLOSE (F : in out FILE_NAME);
procedure READ (F : in FILE_NAME; ITEM : out INTEGER);

procedure WRITE (F : in FILE_NAME; ITEM : in INTEGER);

private

type FILE.NAME is

record

INTERNAI NAME : INTEGER := 0;

end record;

end l_0_PACKAGE;

package body l_0_PACKAGE is

LIMIT : constant := 200;
type FILE_DESCRIPTOR is record ... end record;

DIRECTORY : array (1 .. LIMIT) of FILE_DESCRIPTOR;

procedure OPEN (F : in out FILE_NAME) is ... end;

procedure CLOSE (F : in out FILE_NAME) is ... end;

procedure READ (F : in FILE_NAME; ITEM : out INTEGER) is ... end;

procedure WRITE (F : in FILE_NAME; ITEM : in INTEGER) is ... end;

begin

end l_0_PACKAGE;

This example is characteristic of any case where complete control over the operations of a type is

desired. Such packages serve a dual purpose. They prevent a user from making use of the internal

structure of the type. They also implement the notion of an encapsulated data type where the only

operations on the type are those given in the package specification.

References:

access type 3.8, allocator 4.8, assignment statement 5.2, composite type 3.6 3.7, constant 3.2, equality

4.5.2, initialization 3.2, inequality 4.5.2, mode 6.2, name 4.1, package specification 7.1, subprogram 6,

task type 9, type definition 3.3, variable 3.2, visible part 7.2

7 - 7

MIL-STD-1815
10 December 1980 Ada Reference Manual

7.5 Example of a Table Management Package

The following example illustrates the use of packages in providing high level procedures with a

simple interface to the user.

The problem is to define a table management package for inserting and retrieving items. The
items are inserted into the table as they are supplied. Each inserted item has an order number. The
items are retrieved according to their order number, where the item with the lowest order number
is retrieved first.

From the user's point of view, the package is quite simple. There is a type called ITEM designating
table items, a procedure INSERT for inserting items, and a procedure RETRIEVE for obtaining the
item with the lowest order number. There is a special item NULLJTEM that is returned when the
table is empty, and an exception TABLE_FULL that may be raised by INSERT.

A sketch of such a package is given below. Only the specification of the package is exposed to the
user.

package TABLE_MANAGER is

type ITEM is

record

ORDER_NUM : INTEGER;
ITEM_CODE : INTEGER;
QUANTITY : INTEGER;
ITEM_TYPE : CHARACTER;

end record;

NULL-ITEM : constant ITEM :=

(ORDER_NUM
|
ITEM_CODE

|
QUANTITY => 0, ITEM_TYPE => '

');

procedure INSERT (NEWJTEM : in ITEM);
procedure RETRIEVE (FIRST_ITEM : out ITEM);

TABLE_FULL ; exception; — may be raised by INSERT
end;

The details of implementing such packages can be quite complex; in this case they involve a two
way linked table of internal items. A local housekeeping procedure EXCHANGE is used to move
an internal item between the busy and the free lists. The initial table linkages are established by
the initialization part. The package body need not be shown to the users of the package.

7 - 8

Packages
MIL-STD-1815

10 December 1980

package body TABLE_MANAGER is

SIZE : constant := 2000;

subtype INDEX is INTEGER range 0 .. SIZE;

type INTERNAI ITEM is

record

CONTENT : ITEM;

SUCC : INDEX;
PRED : INDEX;

end record;

TABLE : array (INDEX) of INTERNAI—ITEM;

FIRST_BUSY_!TEM : INDEX := 0;

FIRST_FREE_ITEM : INDEX := 1;

function FREE_LIST_EMPTY return BOOLEAN is ... end;

function BUSY_LI ST_EM PTY return BOOLEAN is ... end;

procedure EXCHANGE (FROM : in INDEX; TO : in INDEX) is ... end;

procedure INSERT (NEW_ITEM : in ITEM) is

begin

if FREE_LIST_EMPTY() then

raise TABLE_FULL;
end if;

remaining code for INSERT
end INSERT;

procedure RETRIEVE (FIRST_ITEM : out ITEM) is ... end;

begin
- initialization of the table linkages

end TABLE_MANAGER;

References'.

exception 11, procedure 6, package body 7.3, visible part 7.2

7.6 Example of a Text Handling Package

This example illustrates a simple text-handling package. The user only has access to the visible

part; the implementation is hidden from him in the private part and the package body (not shown).

From the user's point of view, a TEXT is a variable length string. Each text object has a maximum

length, which must be given when the object is declared, and a current value, which is a string of

some length between zero and the maximum. The maximum possible length of a text object is an

implementation-defined constant.

7 - 9

MIL-STD-1815

10 December 1980
Ada Reference Manual

The package defines first the necessary types, then functions that return some characteristics of

objects of the type, then the conversion functions between texts and the predefined CHARACTER
and STRING types, and finally some of the standard operations on varying strings. Most operations
are overloaded on strings and characters as well as on texts, in order to minimize the number of
explicit conversions the user has to write.

package TEXT_HANDLER is

MAXIMUM : constant INTEGER := SOME_VALUE; -- implementation defined
subtype INDEX is INTEGER range 0 .. MAXIMUM;

type TEXT(MAXIMUM_LENGTH : INDEX) is limited private;

function LENGTH (T : TEXT) return INDEX;
function VALUE (T : TEXT) return STRING;
function EMPTY (T : TEXT) return BOOLEAN;

function TO_TEXT (S : STRING; MAX : INDEX) return TEXT; — maximum length MAX
function TO_TEXT(C : CHARACTER; MAX : INDEX) return TEXT;
function TO_TEXT (S : STRING) return TEXT; — maximum length S'LENGTH
function TO_TEXT(C : CHARACTER) return TEXT;

function (LEFT TEXT; RIGHT TEXT)
function (LEFT TEXT; RIGHT STRING)
function (LEFT STRING; RIGHT TEXT)
function (LEFT TEXT; RIGHT CHARACTER)
function (LEFT : CHARACTER; RIGHT : TEXT)

return TEXT;
return TEXT;
return TEXT;
return TEXT;
return TEXT;

procedure SET(OBJECT : in out TEXT; VALUE : in TEXT);
procedure SET(OBJECT : in out TEXT; VALUE : in STRING);
procedure SET(OBJECT : in out TEXT; VALUE : in CHARACTER);

procedure APPEND(TAIL : in TEXT; TO
procedure APPEND(TAIL : in STRING; TO
procedure APPEND(TAIL : in CHARACTER; TO

in out TEXT);

in out TEXT);

in out TEXT);

procedure AMEND(OBJECT in out TEXT; BY in TEXT; POSITION : in INDEX);
procedure AMEND(OBJECT in out TEXT; BY in STRING; POSITION : in INDEX);
procedure AMEND(OBJECT in out TEXT; BY in CHARACTER; POSITION : in INDEX);

— amend replaces part of the object by the given text, string, or character
starting at the given position in the object

function LOCATE(FRAGMENT : TEXT; WITHIN : TEXT) return INDEX
function LOCATE!FRAGMENT : STRING; WITHIN : TEXT) return INDEX
function LOCATE(FRAGMENT : CHARACTER; WITHIN : TEXT) return INDEX

all return 0 if the fragment is not located

private

type TEXT(MAXIMUM_LENGTH : INDEX) is

record

POS : INDEX := 0;

VALUE : STRING(1 .. MAXIMUM.LENGTH);
end record;

end TEXT.HANDLER;

7 - 10

Packages
MIL-STD-1815

10 December 1980

Example of use of the text handling package :

A program opens an output file, whose name is supplied by the string NAME. This string has the

form

[DEVICE :] [FILENAME [.EXTENSION]]

There are standard defaults for device, filename, and extension. The user-supplied name is passed

to EXPAN D_FILE_NAM E as a parameter, and the result is the expanded version, with any neces-

sary defaults added.

function EXPAN D_FI LE_NAM E(NAM E : STRING) return STRING is

use TEXT_HANDLER;

DEFAULT_DEVICE : constant STRING
DEFAULT_FILE_NAME : constant STRING
DEFAULT_EXTENSION : constant STRING

"SY:";

"RESULTS";
".DAT";

MAXIMUM_FILE_NAME_LENGTH : constant INDEX := SOME_APPROPRIATE_VALUE;
FILE_NAME : TEXT(MAXIMUM_FILE_NAME_LENGTH);

begin

SET(FILE_NAME, NAME);

if EMPTY(FILE_NAME) then

SET(FILE_NAME, DEFAULT_FILE_NAME);
end if;

if LOCATE!':', FILE_NAME) = 0 then

SET(FILE_NAME, DEFAULT-DEVICE & FILE_NAME);
end if;

if LOCATE!'.', FILE_NAME) = 0 then

APPEND(DEFAULT_EXTENSION, TO => FILE_NAME);
end if;

return VALUE(FILE_NAME);

end EXPAN D_FI LE_NAM E;

a

7 - 11

MIL-STD-1815

10 December 1980

8. Visibility Rules

The rules defining the scope of declarations and the rules defining which identifiers are visible at

various points in the text of the program are described in this chapter. These rules are stated here

as applying to identifiers. They apply equally to character strings used as function designators and

to character literals used as enumeration literals.

References’.

character literal 2.5, character string 2.6, enumeration literal 3.5.1, function designator 6.1, identifier 2.3

8.1 Definitions of Terms

Scope of a declaration'.

A declaration associates an identifier with a program entity (see 3.1) such as a variable, a type, a

subprogram, a formal parameter, a record component. The region of text over which a declaration

has an effect is called the scope of the declaration. This region starts at the point where the

declared identifier is introduced (within a compilation unit).

The same identifier may be introduced by different declarations in the text of a program and may
thus be associated with different entities. The scopes of several declarations with the same iden-

tifier may even overlap.

Overlapping scopes of declarations with the same identifier can result from overloading of sub-

programs and of enumeration literals (see 6.6 and 3.5.1). They can also occur for record compo-

nents, entities declared in package visible parts, and for formal parameters, where there is overlap

of the scopes of the enclosing record type definitions, packages, subprograms, entries, or generic

program units. Finally, overlapping scopes can result from nesting. In particular, subprograms,

packages, tasks, and blocks can be nested within each other, and can contain record type defini-

tions or (possibly nested) loop statements.

Visibility of a declaration - visibility of an identifier.

The declaration of an entity with a certain identifier is said to be visible at (or from) a given point in

the text when an occurrence of the identifier at this point can refer to the entity, that is, when the

entity is an acceptable meaning for this occurrence. Some suitable context may be required to

realize this visibility, as explained in section 8.3.

For overloaded identifiers, there may be several meanings acceptable at a given point, and the

ambiguity must be resolved by the rules of overloading (see 4.6 and 6.6). For identifiers that are

not overloaded (the usual case) there can be at most one acceptable meaning.

8 - 1

MIL-STD-1815
10 December 1980

Ada Reference Manual

Whenever the declaration of an entity with a certain identifier is visible from a given point, the
identifier and the entity are also said to be visible from that point. The visibility rules are the rules
defining which identifiers are visible from various points of the text.

References'.

block 5.6, compilation unit 10.1, declaration 3.1, enumeration literal 3.5.1, formal parameter 6.2, identifier
2.3, loop statement 5.5, overloaded literal 3.4 3.5.1 4.7, overloading a subprogram 6.6, package 7, record
component 3.7, record type 3.7, subprogram 6, task 9, type 3.3, variable 3.2

8.2 Scope of Declarations

Entities can be declared in various ways. An entity can be declared in the declarative part of a
block or in the declarative part of the body of a subprogram, package, or task; alternatively, an
entity can be declared in the specification of a package or task. A separately compiled subprogram
or package, other than a subunit, is effectively declared by its presence in a compilation.

An entity can be declared, alternatively, as a record component, as a discriminant, or as a formal
parameter of a subprogram, entry or generic program unit. A loop parameter is declared by its

occurrence in an iteration clause, an enumeration literal by its occurrence in an enumeration type
definition. Finally, the declaration of a label, block identifier, or loop identifier is implicit.

The scope of each form of declaration (that is, the region of text over which the declaration has an
effect) is defined below. Whenever the scope of an entity is said to extend from its declaration, this
means that the scope extends from the point where the declared identifier is introduced.

(a) The scope of a declaration given in the declarative part of a block or in the declarative part of
the body of a subprogram, package, or task extends from the declaration to the end of the
block, subprogram, package, or task.

(b) The scope of a declaration given in the visible part of a package extends from the declaration
to the end of the scope of the package declaration itself. It therefore includes the cor-
responding package body.

(c) The scope of a declaration given in the private part of a package extends from the declaration
to the end of the package specification; it also extends over the corresponding package body.

(d) The scope of an entry declaration given in a task specification extends from the declaration to
the end of the scope of the task declaration. It therefore includes the corresponding task
body.

(e) The scope of a separately compiled subprogram or package, other than a subunit, comprises
that compilation unit, its subunits (if any), any other compilation unit that mentions the name
of the subprogram or package in a with clause, and the body of this subprogram or package.
(See Chapter 10 for compilation units, subunits and with clauses).

8 - 2

Visibility
MIL-STD-1815

10 December 1980

The scope of record components, discriminants, formal parameters, loop parameters, and

enumeration literals is defined by the following rules:

(f) The scope of a record component extends from the component declaration to the end of the

scope of the record type declaration itself.

(g) The scope of a discriminant extends from the discriminant declaration to the end of the scope

of the corresponding type declaration.

(h) The scope of a formal parameter of a subprogram, entry, or generic program unit extends from

the parameter declaration to the end of the scope of the declaration of the subprogram, entry,

or generic program unit itself. It therefore includes the body of the corresponding subprogram

or generic program unit, and, for an entry, the corresponding accept statements.

(i) The scope of a loop parameter extends from its occurrence in an iteration clause to the end of

the corresponding loop.

(j) The scope of an enumeration literal extends from its occurrence in the corresponding

enumeration type declaration to the end of the scope of the enumeration type declaration

itself.

Note-.

The usual rules (a), (b), and (c) apply to subunits since they are declared in the declarative part of

another compilation unit (see 1 0.2). Rule (a) also applies to the implicit declaration of a label, block

identifier, or loop identifier, inserted at the end of a declarative part (see 5.1 , 5.5, 5.6). For rule (e),

note that the subprogram specification given only in the subprogram body acts as the subprogram
declaration (see 6.3).

References'.

accept statement 9.5, block 5.6, block identifier 5.6, compilation unit 10.1, component declaration 3.7,

declarative part 3.9, discriminant 3.7.1, entry 9.5, entry declaration 9.5, enumeration literal 3.5.1,

enumeration type definition 3.5.1, enumeration type declaration 3.5.1, formal parameter 6.2, generic

program unit 1 2, iteration clause 5.5, label declaration 5. 1 , loop 5.5, loop identifier 5.5, loop parameter 5.5,

package 7, package body 7.1, package specification 7.1, parameter declaration 6.1, private part 7.4, record

component 3.7, scope 8.1 , separate compilation 1 0, subprogram 6, subprogram body 6, subunit 1 0.2, task

9, task body 9.1, task specification 9.1, type declaration 3, with clause 10.1.1

8.3 Visibility of Identifiers and Declarations

The scope of the declaration of an identifier, as defined in the previous section, is the region of text

over which the declaration has an effect. For each declaration, there exists a subset of this region

where the declared entity can be named simply by its identifier; the entity, its declaration, and its

identifier are then said to be directly visible from this subset. Where it is not directly visible (but

within its scope), some suitable context may be required to make the entity visible. This context

can be the prefix of a selected component, the place of a choice in a named record aggregate, the

place of a discriminant name in a named discriminant constraint, or the place of a formal

parameter name in a named parameter association.

8 - 3

MIL-STD-1815

10 December 1980 Ada Reference Manual

An entity for which overloading is not possible and that is declared within a given construct is said
to be hidden within an inner construct when the inner construct contains another declaration with
the same identifier. Within the inner construct the hidden outer entity is not directly visible.

A subprogram declaration hides another subprogram declaration only if their specifications are
equivalent with respect to the rules of subprogram overloading (see 6.6). Otherwise a subprogram
identifier (also an enumeration literal) overloads, but does not hide, another subprogram (or
enumeration literal) with the same identifier. A character literal may overload but cannot hide
another character literal. The inner declaration of a subprogram or enumeration literal hides the
declaration of any other non overloadable outer entity with the same identifier.

The name of an entity declared immediately within a subprogram, package, or task, or immediately
within a named block or loop can always be written as a selected component within this unit,
whether the entity is directly visible or hidden (a declaration is said to be immediately within a con-
struct if it is within that construct but not within an inner one). The name of the unit is used as a
prefix (possibly also using component selection); the unit must be visible and the name unam-
biguous (even for an overloaded subprogram). Component selection thus provides the necessary
context for realizing visibility of the selected entity from the point where the identifier occurs (after
the dot).

This form of selected component is available for an identifier denoting an enumeration iiteral but is

not available for record components or discriminants (since they are not declared immediately
within one of the above units). For formal parameters of subprograms and generic program units,
this notation is only available within the unit of which they are parameters (since the parameters
are declared for that unit and not immediately within the unit in which the subprogram or generic
program unit is itself declared). For formal parameters of an entry this notation is only available
within an accept statement for the entry.

An entity declared immediately within a unit is said to be local to the unit; an entity visible within
but declared outside the unit is said to be global to the unit.

For each form of declaration (within its scope), the region of text in which a declared identifier is

visible (and directly visible unless hidden by an inner declaration) is defined as follows:

(a) An identifier declared in the declarative part of a block or in that of the body of a subprogram,
package, or task is directly visible within this block or body.

(b) An identifier declared in the visible part of a package is directly visible within the package
specification and body.

Outside the package, but within its scope, such an identifier is made visible by a selected
component whose prefix names the package. The identifier can also be made directly visible

by means of a use clause (see section 8.4).

(c) An identifier declared in the private part of a package is directly visible within the package
private part and body.

(d) An (entry) identifier declared in a task specification is directly visible within the task specifica-
tion and body.

Outside the task, but within its scope, the identifier is made visible by a selected component
whose prefix names the task or a task object of the task type.

8 - 4

Visibility

MIL-STD-1815

10 December 1980

(e) The identifier of a separately compiled subprogram or package is directly visible within the

compilation unit itself and its subunits, and within any other compilation unit that has a with

clause which mentions the identifier.

(f) The identifier of a record component is directly visible within the record type definition that

declares the component, and within a record type representation specification for the record

type.

Outside the record type definition, but within the scope of that definition, a record component

is made visible by a selected component whose prefix names a record of the type of which it is

a component. It is also visible as a choice in a component association of an aggregate of the

record type.

(g) The identifier of a discriminant is directly visible within the discriminant part that declares the

discriminant and within the associated record type definition.

Where it is not directly visible, but within the scope of the type, a discriminant is made visible

by being in a selected component or in an aggregate, as for any other record component. It is

also visible at the place of a discriminant name in a named discriminant specification of a dis-

criminant constraint.

(h) The identifier of a formal parameter of a subprogram is directly visible within the formal part

where the parameter is declared and within the subprogram body. The identifier of a formal

parameter of an entry is directly visible within the formal part where the parameter is declared

and within any accept statement for the entry. The identifier of a generic formal parameter is

directly visible within the generic part where the parameter is declared and within the

specification and body of the generic subprogram or package.

Where it is not directly visible, but within its scope, a formal parameter of a subprogram,

entry, or generic program unit is visible at the place of a formal parameter name in a named
parameter association of a corresponding subprogram call, entry call, or generic instantiation.

(i) The identifier of a loop parameter is directly visible within the loop where it is declared.

(j) An enumeration literal is directly visible within the scope of the enumeration type that

declares the literal.

A declaration must not hide another declaration in the same declarative part (that is, at the same
level, not in a nested declarative part). For this rule a generic part, a formal part of a subprogram,

and the declarative part of the subprogram body are considered as comprising one declarative

part. Similarly, a generic part, a package specification, and the declarative part of a package body

are considered as comprising a single declarative part.

8 - 5

MIL-STD-1815
10 December 1980 Ada Reference Manual

Example :

procedure P is

A : BOOLEAN;
B : BOOLEAN;

procedure Q is

C : BOOLEAN;
B : BOOLEAN; — an inner redeclaration of B

begin

B := A; — means Q.B := P.A;

C := P.B; — means Q.C := P.B;

end;

begin

A := B; — means P.A := P.B;

end;

Note:

An enumeration literal may overload but cannot hide another enumeration literal since enumera-
tion literals are declared by their occurrence in an enumeration type declaration, and since two
type declarations introduce distinct types.

References :

accept statement 9.5, aggregate 4.3, block 5.6, character literal 2.5, compilation unit 10.1, declaration 3.1,

declarative part 3.9, discriminant 3.7. 1 , discriminant constraint 3.7.2, entry 9.5, entry call 9.5, enumeration
literal 3.5.1 ,

enumeration type 3.5.1, formal parameter 6.2, formal part 6.1
,
generic formal parameter 12.1

,

generic instantiation 12.3, generic package 12.1, generic part 12.1, generic program unit 12, generic sub-
program 12.1, identifier 2.3, loop 5.5, loop parameter 5.5, name 4.1, overloading 3.4 3.5.1 4.6 6.6,

package 7, package body 7.1, package specification 7.1, private part 7.4, record component 3.7, record

type definition 3.7, record type representation 13.4, scope 8.1, selected component 4.1.3, subprogram 6,

subprogram body 6, subprogram call 6.4, subprogram declaration 6, subprogram overloading 6.6, sub-
program specification 6.1, subunit 10.2, task 9, task body 9.1, task object 9.2, task specification 9.1, task

type 9.2, use clause 8.4, visible 8.1, visible part 7.2, with clause 10.1.1

8.4 Use Clauses

If the name of a package is visible at a given point of the text, the entities declared within the visi-

ble part of the package can be denoted by selected components. In addition, direct visibility of

such entities can be achieved by means of use clauses.

use_clause ::= use packagejname {, package_narc\e\\

A use clause is a declarative item. The effect of the elaboration of a use clause is to cause certain

identifiers of the visible parts of the named packages to become directly visible from the text sub-

ject to the use clause. This effect takes place only on completion of this elaboration.

8 - 6

Visibility

MIL-STD-1815

10 December 1980

In order to define the set of identifiers (and entities) that are made directly visible by use clauses at

a given point of the text, consider the set of package names appearing in the use clauses of all

(nested) units enclosing this point, up to the compilation unit itself.

• An identifier is made directly visible by a use clause if it is declared in the visible part of one

and only one package of the set and if the same identifier declared elsewhere is not already

directly visible otherwise (that is in the absence of any use clause).

• An enumeration literal declared in the visible part of a package of the set is made directly visi-

ble if and only if the corresponding identifier is not otherwise directly visible, and in any case

if it is a character literal.

• A subprogram declared in the visible part of a package of the set is made directly visible if and
only if the two following conditions are satisfied. First, the specification of the subprogram
must not be equivalent (see 6.6) to that of another subprogram in the set or to that of a sub-

program that is otherwise directly visible. Second, an entity other than a subprogram or an

enumeration literal and with the same identifier must not be declared in the visible part of any
of the packages of the set, nor may such an entity be otherwise directly visible.

Thus an identifier made directly visible by a use clause can never hide another identifier although it

may overload it. If an entity declared in the visible part of a package cannot be made visible by a

use clause (because of one of the above conflicts), the name of the entity must take the form of a

selected component.

For overloading resolution within an expression, identifiers made visible by a use clause are only

considered if an interpretation of the complete expression cannot otherwise be found (that is, if the

expression would be undefined without the use clause). Similarly, for overloading resolution of a

procedure or entry call, identifiers made visible by a use clause are only considered if an interpreta-

tion of the complete procedure or entry call cannot otherwise be found. An ambiguity exists if there

is more than one interpretation without the use clauses or if there is no interpretation without the

use clauses but more than one can be given in their presence.

Example of conflicting names in two packages'.

procedure R is

use TRAFFIC, WATER_COLORS;
-- subtypes used to resolve the conflicting type name COLOR
subtype T_COLOR is TRAFFIC.COLOR;
subtype W_COLOR is WATER_COLORS.COLOR;

SIGNAL : T_COLOR;
PAINT : W_COLOR;

begin

SIGNAL := GREEN; - that of TRAFFIC
PAINT := GREEN; ~ that of WATER_COLORS

end R;

8 - 7

MIL-STD-1815

10 December 1980
Ada Reference Manual

Example ofname identification with a use clause :

package D is

T, U, V : BOOLEAN;
end D;

procedure P is

package E is

B, W, V : INTEGER;
end E;

procedure Q is

T, X : REAL;
begin

declare

use D, E;

begin
— the name T means Q.T, not D.T
— the name U means D.U
— the name B means E.B

the name W means E.W
— the name X means Q.X

the name V is illegal ; either D.V
end;

end Q;
begin

or E.V must be used

end P;

Example of overloading resolution with a use clause :

procedure MAIN is

package P is

function F (X : REAL) return TARGET; - P.F
function G (X : SOURCE) return REAL; - P.G
function K (X : SOURCE) return BOOLEAN; - P.K

end P;

function F (X BOOLEAN) return TARGET; - MAIN.F
function G (X SOURCE) return BOOLEAN; - MAIN.G
function H (X SOURCE) return REAL; - MAIN.H
function K (X SOURCE) return REAL; - MAIN.K
S : SOURCE;
T : TARGET;
use P;

begin

T := F(G(S»; - MAIN.F(MAIN.G(S)), interpreted without considering use clause
T := F(H(S)); - P.F(MAIN.H(S))

T := F(K(S)) would be ambiguous
- it could mean either MAIN.F(P.K(S)) or P.F(MAIN.K(S))

end;

c

8 - 8

Visibility MIL-STD-1815

10 December 1980

Note :

Renaming declarations and subtype declarations may help to avoid excessive use of selected com-
ponents.

References :

character literal 2.5, compilation unit 10.1, declarative item 3.9, direct visibility 8.3, elaboration 3.1, entry

call 9.5, enumeration literal 3.5.1, expression 4.4, identifier 2.3, hidden 8.3, name 4.1, overloading 3.4

3.5.1 4.6 6.6, package 7, procedure call 6.4, renaming declaration 8.5, selected component 4.1.3, sub-

program 6, subprogram specification 6.1, subtype declaration 3.3, type 3.3, visible 8.1, visible part 7.2

8.5 Renaming Declarations

A renaming declaration declares another name for an entity.

renaming_declaration ::=

identifier : type_mark renames name;

|
identifier ; exception renames name;

|
package identifier renames name;

|
task identifier renames name;

|
subprogram_specification renames name;

For the elaboration of a renaming declaration, the identifier is first introduced, or the subprogram
specification is elaborated, and then the identity of the entity following the reserved word renames
is established. The identifier can be used as the name of this entity from then on.

The first form is used for renaming objects. The newly declared identifier is constant if the

renamed entity is.

The type mark given in the renaming declaration must express the same constraints as those of the

renamed entity. A component of an unconstrained object of a type with discriminants cannot be
renamed if the existence of the component depends on the value of a discriminant.

The last form is used for renaming a subprogram (or entry) whose specification matches the one
given in the renaming declaration in the following sense. The renamed subprogram and this

specification must have parameters in the same order, of the same mode and with the same types

and constraints. For functions the result type and constraints must be the same. Parameter
names, the presence or absence of defaults, and the values of any defaults, are ignored for this

matching; hence a renaming declaration can introduce different default parameters.

A function can be renamed as an operator and vice versa (renaming cannot, of course, declare an

operator with default parameters, see 6.7). An entry can only be renamed as a procedure.

A renaming declaration is ambiguous, and therefore illegal, if more than one visible subprogram (or

entry) matches the subprogram specification. The exception CONSTRAINT_ERROR is raised if the

constraints of the parameters or results of the two subprograms (or entries) are not the same.

8 - 9

MIL-STD-1815

10 December 1980

Ada Reference Manual

Examples:

procedure TMR (ELEM : out ITEM) renames TAB LE_MANAGER. RETRIEVE;
procedure SORT (X ; in out LIST) renames QUICKSORT2;
task T renames POOL(6);

FULL : exception renames TABLE_MANAGER.TABLE_FULL;

declare

D : PERSON renames LEFTMOST_PERSON;
begin

L.AGE := L.AGE + 1;

end;

function REAL_PLUS(X,Y : REAL) return REAL renames "+";

function INT_PLUS (X,Y : INTEGER) return INTEGER renames
function (X,Y : VECTOR) return REAL renames DOT_PRODUCT;

Notes:

Renaming may be used to resolve name conflicts, to achieve partial evaluation and to act as a

shorthand. Renaming does not hide the old name. Neither a label, nor a block or loop identifier

may be renamed. A subtype can effectively be used to rename a type as in

subtype INPUT is TEXT_IO.IN_FILE;

References:

block identifier 5.6, constant 3.2, constraint 3.3, constraint on parameters 6.4.1, constraint_error exception
11.1, declaration 3, elaboration 3.1, entry 9.5, function 6.1 6.5, identifier 2.3, label 5.1, loop identifier 5.5,
mode 6.2, name 4.1, operator 4.5, parameter 6.1, parameter name 6.2, parameter type 6.1, subprogram 6,
subprogram specification 6.1, subtype 3.3, type 3.3, type mark 3.3, unconstrained record type 3.7, variant
record 3.7.1

8.6 Predefined Environment

All predefined identifiers, for example those of built in types such as INTEGER, BOOLEAN, and

CHARACTER, operators and the predefined function ABS, are assumed to be declared in the

predefined package STANDARD given in Appendix C. All identifiers declared in the visible part of

the package STANDARD are assumed to be declared at the outermost level of every program. In

addition, the separately compiled subprograms and packages named in a with clause are assumed

to be implicitly declared in STANDARD.

Note:

If all blocks of a program are named, the name of any program unit can always be written as a

selected component starting with STANDARD (unless this name is itself hidden by a redeclara-

tion). Apart from the local package SYSTEM and the definitions of predefined numeric types and

subtypes, the package STANDARD must be the same for all implementations of the language.

References:

abs function C, block 5.6, boolean type 3.5.3, character type 3.5.2, identifier 2.3, integer type 3.5.4, name

4.1, operator 4.5, package 7, program unit 7, selected component 4.1.3, standard package C, subprogram

6, type 3.3, visible part 7.2, with clause 10.1.1

8 - 10

MIL-STD-1815
10 December 1980

9. Tasks

Tasks are entities that may operate in parallel. Parallel tasks may be implemented on multicom-
puters, multiprocessors, or with interleaved execution on a single processor. Tasks may have
entries which may be called by other tasks. Synchronization is achieved by rendezvous between a

task issuing an entry call and a task accepting the call. Entries are also the principal means of com-
munication between tasks.

Tasks are one of the three forms of program units, of which programs can be composed. The other

forms are subprograms and packages. The properties of tasks and entries, and the statements

specific to tasking (that is, accept statements and selective waits) are described in this chapter.

9.1 Task Specifications and Task Bodies

A task specification which starts with the reserved words task type defines a task type. An object

of a task type denotes a task having the entries, if any, that are declared in the task specification.

The task specification therefore specifies the interface between tasks of the type and other tasks of

the same or of different types.

The execution of a task is defined by a task body. A task specification and the corresponding task
body have the same identifier and must occur in the same declarative part, the specification first.

task_declaration ::= task_specification

task_specification ::=

task [type] identifier [is

|entry_declaration)

(representation_specification

}

end [identifier]];

task_body ::=

task body identifier is

[declarative_part]

begin

sequence_of_statements

(exception

|exception_handler|]

end [identifier];

" A task specification without the reserved word type defines a single task. A task declaration of this

form introduces a task name (rather than the name of a task type) and is equivalent to the declara-
tion of an anonymous task type immediately followed by the declaration of an object of the type.

In the remainder of this chapter, explanations are given in terms of task type specifications; the
corresponding explanations for single task declarations follow from the stated equivalence.

9 - 1

MIL-STD-1815
10 December 1 980

Ada Reference Manual

For the elaboration of a task specification the task type (or task) identifier is first introduced and

can from then on be used as the name of the corresponding task type (or task). Entry declarations

and representation specifications, if any, are then elaborated in the given order. Such representa-

tion specifications only apply to the entries declared in the task specification, or to the task type (or

task) itself (see 13.2 and 13.5).

The elaboration of a task body has no other effect than to establish the body as defining the execu-

tion of tasks of the corresponding type.

Examples of specifications of task types :

task type RESOURCE is

entry SEIZE;

entry RELEASE;
end RESOURCE;

task type KEYBOARD_DRIVER is

entry READ (C : out CHARACTER);
entry WRITE (C : in CHARACTER);

end KEYBOARD_DRIVER;

Examples of specifications of single tasks:

task PRODUCER_CONSUMER is

entry READ (V : out ELEM);
entry WRITE (E : in ELEM);

end;

task CONTROLLER is

entry REQUEST(LEVEL)(D : DATA); - a family of entries

end CONTROLLER;

task USER; -- has no entry

Example of task specification and corresponding body:

task PROTECTED_ARRAY is

INDEX and ELEM are global types

entry READ (N : in INDEX; V : out ELEM);
entry WRITE (N : in INDEX; E : in ELEM);

end;

task body PROTECTED_ARRAY is

TABLE : array(INDEX) of ELEM := (INDEX => 0);

begin

loop

select

accept READ (N : in INDEX; V : out ELEM) do
V := TABLE(N);

end READ;
or

accept WRITE (N : in INDEX; E : in ELEM) do
TABLE(N) := E;

end WRITE;
end select;

end loop;

end PROTECTED_ARRAY;

9 - 2

Tasks

MIL-STD-1815

10 December 1980

References'.

accept statement 9.5, declarative part 3.9, elaboration 3.1, entry 9.5, entry representation specification

13.1, length specification 13.2, selective wait 9.7.1

9.2 Task Objects and Task Types

Objects of a task type are defined by object declarations where the type indicated is the task type.

Task objects can also be components of records and arrays. Finally, objects of a task type can be

the objects (or components of the objects) designated by the values of an access type.

The value of an object of a task type denotes a task of the type (this task has the corresponding
entries). This value is defined either by the elaboration of the corresponding object or by its crea-

tion by an allocator. Entries of the corresponding task can be called once this value is defined.

Neither assignment nor comparison for equality or inequality are defined for objects of task types.

In this respect, a task type has the properties of a limited private type; it can appear as the defini-

tion of a limited private type given in a private part, and as a generic actual parameter associated
with a formal parameter that is a limited private type.

In subprogram calls and generic instantiations, a task object can be passed as an actual parameter
associated with a formal in parameter of the same task type. Since the value of a task object
denotes a task, both the formal parameter and the actual parameter denote the same task. The in

out and out parameter modes are not allowed for parameters of a task type.

Examples :

CONTROL : RESOURCE;
TELETYPE : KEYBOAR D_D RIVER

;

POOL : arrayfl .. 10) of K EYBOAR D_D RIVER;
see also examples of declarations of single tasks in 9.1

Example of access type designating task objects :

type KEYBOARD is access KEYBOAR D_DRIVER;

TERMINAL : KEYBOARD := new KEYBOAR D_D RIVER

;

Notes:

Task objects behave as constants since their values are implicitly defined and no assignment is

available. If an application needs to store and exchange task identities, it can do so by defining an
access type designating the corresponding task objects and by using access values for identifica-

tion purposes (see above example). Assignment is available for such an access type as for any
access type.

There are no constraints applicable to task types.

References :

access type 3.8, allocator 4.8, entry 9.5, generic parameter 12.1 ,
limited private type 7.4.2, object declara-

tion 3.2

9 - 3

MIL-STD-1815
10 December 1980

Ada Reference Manual

9.3 Task Execution

A task body defines the execution of the tasks of the corresponding type. The activation of a task

object consists of the elaboration of the declarative part, if any, of the corresponding task body.
After activation the statements of the task body are executed.

Task objects declared immediately within a declarative part (that is, not within a nested declarative
part), and task objects that are components of other objects declared immediately within a
declarative part, are all activated before execution of the first statement following the declarative
part. Each task can continue its execution as a parallel entity once its activation is completed.

Should an exception occur during the activation of one of these tasks, that task and any other of
these tasks that are not yet activated become terminated tasks (see 9.4); already activated tasks
are unaffected. Such an exception is treated as if raised within the statements following the
declarative part in question. Should an exception occur within the declarative part itself, all of the
declared tasks so far elaborated become terminated tasks.

For the above rules, in a package body without statements, a null statement is assumed; in the
absence of a package body, one containing a single null statement is assumed to occur not earlier
than the task body.

The creation of a task object by an allocator is followed by its activation and execution. Execution
of the allocator is complete when all created task objects have been activated. Each task can con-
tinue its execution as a parallel entity as soon as its activation is completed. Should an exception
occur during the activation of one of these tasks, that task and any other of these tasks that are not
yet activated become terminated tasks.

A task must not be activated before the elaboration of the corresponding task body is complete. An
entry of a task can be called before the task has been activated. If the called task terminates
before accepting an entry call, the exception TASKING_ERROR is raised in the calling task (see

Example:

procedure P is

A, B : RESOURCE; -- elaborate A, B

C : RESOURCE; — elaborate C
begin
— A, B, C are activated in any order

end;

Notes :

The language does not specify the order in which tasks declared within a declarative part are
activated.

9 - 4

Tasks
MIL-STD-1815

10 December 1980

References-.

allocator 4.8, declarative part 3.9, elaboration 3.1, entry 9.5, exception 11, handling an exception 11,

package body 7.3, statement 5, task body 9.1, task termination 9.4, task object 9.2, task type 9.2,

tasking_error exception 11.5

9.4 Normal Termination of Tasks

Each task depends either on a block, a subprogram body, a task body, or on a library package (no

task depends on a package declared within another unit). For each of these units a dependent task
is one of:

(a) A task object that is an object (or a component of an object) declared within the unit con-
sidered, including within an inner package, but excluding within any inner block, subprogram
body, or task body.

(b) A task object that is the object (or a component of the object) designated by the value of an
access type, if this access type is declared within the unit considered, including within an
inner package, but excluding within any inner block, subprogram body, or package body.

A block, subprogram body, or task body is not left until all dependent tasks have terminated their

execution (including the case where the end of this block or body is reached as the result of an
unhandled exception).

Normal termination of a task occurs when its execution reaches the end of its task body and all

dependent tasks, if any, have terminated. Normal termination also occurs on selection of a ter-

minate alternative in a selective wait statement (see 9.7.1). After its termination, a task is said to

be terminated.

Example-.

declare

type GLOBAL is access RESOURCE;
A, B : RESOURCE;
G : GLOBAL;

begin
-- activation of A and B
declare

type LOCAL is access RESOURCE;
X : GLOBAL := new RESOURCE; -- activation of X.all

L : LOCAL := new RESOURCE; — activation of Lali

C : RESOURCE;
begin

activation of C

end; -- await termination of C and Lall but not X.all

end; — await termination of A, B, G.all and X.all

9 - 5

MIL-STD-1815

10 December 1980
Ada Reference Manual

Notes'.

The usual rules apply to the main program. Consequently, termination of the main program awaits
termination of any dependent task even if the corresponding task type is declared in a library

package. On the other hand, termination of the main program does not await termination of tasks
denoted by task objects declared in library packages; the language does not define whether such
tasks are required to terminate.

References'.

access type 3.8, block 5.6, component 3.2 3 3.6 3.7 4. 1 , library package 1 0.1 , main program 1 0.1 , object
3.2, selective wait 9.7.1, task type 9.2, terminate alternative 9.7

9.5 Entries and Accept Statements

An entry declaration is similar to a subprogram declaration and can be given only in a task

specification. An entry of a task can be called by another task. The actions to be performed when
an entry is called are specified by corresponding accept statements. Entry call and accept state-

ments are the primary means of communication between tasks and of synchronization of tasks.

entry._declaration ::=

entry identifier [(discrete_range)] [forma f part];

entry_call ::= entryjname [actual_parameter_part];

accept_statement

accept entry_name [formaLpart] [do

sequence_of_statements
end [identifier]];

For the elaboration of an entry declaration the entry identifier is first introduced; any discrete range

is then evaluated; finally, any formal part is elaborated as for a subprogram declaration. From
then on, the entry identifier can be used as a name of the corresponding entry (or entry family). An
entry declaration including a discrete range declares a family of distinct entries having the same
formal part (if any); that is, one such entry for each value of the discrete range.

Each task of a task type has the entries declared in the specification of the task type. Within the

body of a task, each of its entries (or entry families) can be named by the corresponding identifier;

the name of an entry of a family takes the form of an indexed component, the family name being

followed by the index in parentheses. Outside the body of a task an entry name has the form of a

selected component, with the name of the task object prefixing the identifier of one of its entries.

Selected component notation may also be used within a task body, with the name of the task or

task type as the prefix.

The syntax of an entry call is similar to that of a procedure call. The semantics is as follows.

An accept statement specifies the actions to be performed at a call of a named entry (it can be an
entry of a family). The formal part given in the accept statement must match that given in the cor-

responding entry declaration; the matching rules are the same as for the match between the for-

mal part of a subprogram body and the formal part of the corresponding subprogram declaration.

9 - 6

Tasks

MIL-STD-1815
10 December 1980

An accept statement for an entry of a given task may only appear within the sequence of state-
ments of the corresponding task body. The consequence of this rule is that a task can execute
accept statements only for its own entries. A task body may contain more than one accept state-
ment for the same entry.

Execution of an accept statement starts with the evaluation of any entry index (in the case of an
entry of a family). Execution of an entry call also starts with the evaluation of any entry index, fol-

lowed by the evaluation of any expression in the actual parameter list. Further execution of the
accept statement and of a corresponding entry call are synchronized. There are two possibilities:

® If a calling task issues an entry call before a corresponding accept statement is reached by the
task owning the entry, the execution of the calling task is suspended.

® If a task reaches an accept statement prior to any call of that entry, the execution of the task is

suspended until such a call occurs.

When an entry has been called and a corresponding accept statement is reached, the sequence of
statements, if any, of the accept statement is executed by the called task (while the calling task
remains suspended). This interaction is called a rendezvous. Thereafter, the calling task and the
task owning the entry can continue their execution in parallel.

If several tasks call the same entry before a corresponding accept statement is reached, the calls
are queued; there is one queue associated with each entry. Each execution of an accept state-
ment removes one call from the queue. The calls are processed in order of arrival.

Entries may be overloaded both with each other and with procedures with the same identifier. An
entry may be renamed as a procedure.

An attempt to call an entry of a terminated task raises the exception TASKING_ERROR. The
exception CONSTRAINT_ERROR is raised by the evaluation of the name of an entry of a family if

the index is not within the specified discrete range.

Examples of entry declarations :

entry READ(V : out ELEM);
entry SEIZE;

entry REQUEST(RANK)(D : DATA); - a family of entries

Example of entry calls :

CONTROL.RELEASE;
PRODUCER_CONSUMER.WRITE(E);
POOL(5).READ(NEXT_CHAR);
CONTROLLER.REQUEST(LOW)(SOME_DATA);

Example of accept statements:

accept SEIZE;

accept READ(V : out ELEM) do
V := LOCAL.ELEM;

end READ;

accept REQUEST(LOW)(D : DATA) do ... end REQUEST;

9 - 7

MIL-STD-1815

10 December 1980
Ada Reference Manual

Notes:

An accept statement may contain other accept statements (possibly for the same entry) and may
call subprograms issuing entry calls. An accept statement need not have a sequence of statements

even if the corresponding entry has parameters. Equally, it may have a sequence of statements

even if the corresponding entry has no parameters. A task may call its own entries but it will, of

course, deadlock. The language permits conditional and timed entry calls (see 9.7.2 and 9.7.3).

The language rules ensure that a task can only be in one queue at a given time.

If the bounds of the discrete range of an entry family are integer numbers, the indexes must be of

the predefined type INTEGER (see 3.6.1).

References:

actual parameter 6.4, conditional entry call 9.7.2, constraint_error exception 11.1, discrete range 3.6.1,

elaboration 3.1 3.9, formal part 6.2, indexed component 4.1.1, name 4.1, overloading a subprogram 6.6,

procedure call 6.4, renaming 8.5, selected component 4.1.3, sequence of statements 5.1, subprogram call

6.4, subprogram declaration 6.1 , subprogram body 6.3, task body 9.1 , task specification 9.1 , task type 9.2,

tasking_error exception 11.5, timed entry call 9.7.3

9.6 Delay Statements, Duration and Time

A delay statement suspends further execution of the task that executes it for at least the given time
interval.

delay_statement ::= delay simple_expression;

The argument of the delay statement is of the predefined fixed point type DURATION and is given
in seconds. A delay statement with a non-positive argument has no effect.

The type DURATION allows representation of durations (both positive and negative) up to at least

86400 seconds (one day). The definition of the type TIME is provided in the predefined library

package CALENDAR. The function CLOCK returns the current value of TIME at the time it is called.

The operators "+" and for addition and subtraction of times and durations have a conventional

meaning.

package CALENDAR is

type TIME is

record

YEAR : INTEGER rang© 1901 .. 2099;
MONTH : INTEGER range 1 .. 12;

DAY : INTEGER range 1 ..31;
SECOND : DURATION;

end record;

function CLOCK return TIME;

function "+" (A : TIME; B DURATION) return TIME;
function "+" (A : DURATION; B TIME) return TIME;
function (A : TIME; B DURATION) return TIME;
function (A : TIME; B TIME) return DURATION

end CALENDAR;

9 - 8

Tasks MIL-STD-1815

10 December 1980

Examples :

delay 3.0; — delay 3.0 seconds

declare

INTERVAL : constant DURATION := 60.0;

NEXT_TIME : CALENDAR.TIME := CALENDAR.CLOCKO + INTERVAL;
begin

loop

delay NEXT_JT1ME - CALENDAR.CLOCKO;
some actions

NEXT_TIME := NEXT_TIME + INTERVAL;
©nd loop;

end;

Notes :

The second example causes the loop to be repeated every 60 seconds on the average. This inter-

val between two successive iterations is only approximate. However there will be no cumulative
drift as long as the duration of each iteration is (sufficiently) less than INTERVAL

References :

fixed point type 3.5.9, library package 10.1

9.7 Select Statements

There are three forms of select statements. One form provides a selective wait for one or more
alternatives. The other two provide conditional and timed entry calls

select_statement selective__wait

|conditional_entry_call
|
timed_entry__call

9.7.1 Selective Wait Statements

This form of the select statement allows a combination of waiting for, and selection of, one or
more alternatives. The selection may depend on conditions associated with each alternative of the
selective wait statement.

selective_wait ::=

select

[when condition =>]
selector 'ternative

I or [when condition =>]
select_alternative|

[else

sequence_of__stat0ments]
end select;

9 9

MIL-STD-1815

10 December 1980

Ada Reference Manual

select-alternative ::=

accept_statement [sequence_of_statements]

|
delay_statement [sequence_of_statements]

|
terminate;

A select alternative is said to be open if there is no preceding when clause or if the corresponding

condition is true. It is said to be closed otherwise.

A selective wait can contain at most one terminate alternative; it cannot contain both a terminate

alternative and an alternative starting with a delay statement. Each of these possibilities excludes

the presence of an else part. A selective wait must contain at least one alternative commencing
with an accept statement.

Execution of a selective wait statement proceeds as follows:

(a) All conditions are evaluated to determine which alternatives are open. For an open alter-

native starting with a delay statement, the delay expression is evaluated immediately after the

evaluation of the corresponding condition. Similarly, if an open alternative starts with an

accept statement for an entry of a family, the entry index is evaluated immediately after the

evaluation of the condition.

(b) An open alternative starting with an accept statement may be selected if a corresponding

rendezvous is possible (that is, when a corresponding entry call has been issued by another

task). When such an alternative is selected, the corresponding accept statement and possible

subsequent statements are executed.

(c) An open alternative starting with a delay statement will be selected if no other alternative has

been selected before the specified duration has elapsed. Any subsequent statements of the

alternative are then executed.

(d) An open alternative with the reserved word terminate may be selected only if the task con-

taining the selective wait belongs to the set of dependent tasks of a block, subprogram, or

task, and either the end of this block, subprogram body or task body has been reached (see

9.4), or in the case of a task body, a terminate alternative has been reached. This (first men-
tioned) alternative will be selected if and only if all other tasks of the set, also any task

depending on a task of the set, and so on, are either terminated or waiting at a selective wait

with a terminate alternative. Selection of a terminate alternative causes normal termination of

the task. A terminate alternative may not appear in an inner block that declares task objects.

(e) If no alternative can be immediately selected, and there is an else part, the else part is

executed. If there is no else part, the task waits until an open alternative can be selected.

(f) If all alternatives are closed and there is an else part, the else part is executed. If all alter-

natives are closed and there is no else part, the exception SELECT-.ERROR is raised.

In general, several entries of a task may have been called before a selective wait is encountered.

As a result, several alternative rendezvous are possible. Similarly, several open alternatives may
start with an accept statement for the same entry. In such cases one of these alternatives is

selected arbitrarily.

9 - 10

Tasks MIL-STD-1815

10 December 1980

Example :

task body RESOURCE is

BUSY : BOOLEAN := FALSE;
begin

loop

select

when not BUSY =>
accept SEIZE do

BUSY := TRUE;
©nd;

or

accept RELEASE do
BUSY := FALSE;

©nd;

or

when not BUSY => terminate;

©nd select;

©nd loop;

end RESOURCE;

Notes :

Selection among open alternatives starting with accept statements is performed arbitrarily. This
means that the selection algorithm is not defined by the language and that any program relying on
a particular selection algorithm is therefore erroneous. Several open alternatives may start with a
delay statement. A consequence of the above rules is that only the alternative with the shortest
duration can be selected (a negative duration being shorter than a positive one).

The language does not define in which order to evaluate the conditions of a select statement. A
program that relies on a specific order is therefore erroneous.

References :

accept statement 9.5, condition 5.3, delay statement 9.6, dependent task 9.4, duration 9.6, entry call 9.5,
entry family 9.5, rendezvous 9.5, sequence of statements 5.1, task 9.2 task termination 9.4

9.7.2 Conditional Entry Calls

A conditional entry call issues an entry call if and only if a rendezvous is immediately possible.

conditionaLentry_call ::=

select

entry_call [sequence_of_statements]
else

sequence_of_statements
end select;

9 - 11

MIL-STD-1815

10 December 1980 Ada Reference Manual

For the execution of a conditional entry call an entry index (in the case of an entry of a family) is

first evaluated. This is followed by the evaluation of any expression occurring in the actual

parameters. If a rendezvous with the called task is immediately possible, it is performed and the

optional sequence of statements after the entry call is then executed. Otherwise the else part is

executed.

Example :

procedure SPIN(R : RESOURCE) is

begin

loop

select

R.SEIZE;

return;

else

null; -- busy waiting

end select;

end loop;

end;

References'.

accept 9.5, actual parameter 6.4, entry call 9.5, entry family 9.5, rendezvous 9.5, sequence of statements

5.1

9.7.3 Timed Entry Calls

A timed entry call issues an entry call if and only if this entry call can be accepted within a given

delay.

timed_entry_call

select

entry_call [sequence_of_statements]

or

delay_statement [sequence_of_statements]

end select;

For the execution of a timed entry call an entry index (in the case of an entry of a family) is first

evaluated. This is followed by the evaluation of any expression occurring in the actual parameters

and by the evaluation of the expression stating the delay.

If a rendezvous can be started within the specified duration, it is performed and the optional

sequence of statements after the entry call is then executed. Otherwise the optional sequence of

statements of the delay alternative is executed.

9 - 12

Tasks MIL-STD-1815

10 December 1980

Example:

select

CONTROLLER.REQUEST(URGENT)(SOME_DATA);
or

delay 45.0;

controller too busy, try something else

end select;

References'.

actual parameter 6.4, accept statement 9.5, delay statement 9.6, duration 9.6, entry call 9.5, entry family

9.5, expression 4.4, rendezvous 9.5, sequence of statements 5.1,

9.8 Priorities

Each task may (but need not) have a priority, which is an integer value of the predefined subtype
PRIORITY. A lower value indicates a lower degree of urgency; the range of priorities is implemen-
tation defined. A priority is associated with a task if a pragma

pragma PRIORITY (sfaf/eexpression);

appears in the corresponding task specification; the priority is given by the value of the expression.
A priority is associated with the main program if such a pragma appears in its outermost
declarative part. At most one such pragma can appear within a given task specification (or for the
main program).

The specification of a priority is an indication given to the compiler, to assist in the allocation of
processing resources to parallel tasks when there are more tasks eligible for execution than can be
supported simultaneously by the available processing resources. The effect of priorities on
scheduling is defined by the following rule:

If two tasks with different priorities are both eligible for execution and could sensibly be
executed using the same processing resources then it cannot be the case that the task with
the lower priority is executing whiie the task with the higher priority is not.

For tasks of the same priority, the scheduling order is not defined by the language. For tasks
without explicit priority, the scheduling rules are not defined, except when such tasks are engaged
in rendezvous. If the priorities of both tasks engaged in a rendezvous are defined, the rendezvous
is executed with the higher of the two priorities. If only one of the two priorities is defined, the
rendezvous is executed with at least that priority. If neither is defined, the priority of the rendez-
vous is undefined.

Notes:

The priority of a task is static and therefore fixed. Priorities should be used only to indicate relative
degrees of urgency; they should not be used for task synchronization.

References:

declarative part 3.9, main program 10.1, pragma 2.8, rendezvous 9.5, static expression 4.9, synchroniza-
tion 9.5, task 9.2, task specification 9.1

9 - 13

MIL-STD-1815

10 December 1980

Ada Reference Manual

9.9 Task and Entry Attributes

For a task object or for a task type T the following attributes are defined:

T'TERMINATED Of type BOOLEAN. This attribute is initially equal to FALSE when the

task T is declared (or allocated) and becomes TRUE when the task is

terminated.

T'PRIORITY Of the subtype PRIORITY. The value of this attribute is the priority of

the task T if one is defined; use of this attribute is otherwise not

allowed.

T'STORAGE_SIZE This attribute indicates the number of storage units allocated for the

task T. Of type universal integer.

For an entry E of a task T the following attribute may be used within the body of the task T:

E'COUNT The number of entry calls presently on the queue associated with the entry

E. Of type INTEGER.

Note'.

Algorithms interrogating the attribute E'COUNT should take precautions to allow for the increase

of the value of this attribute for incoming entry calls, and its decrease, for example with timed entry

calls. Within an accept statement for an entry, the count does not include the calling task.

References'.

attribute 4.1.4, entry call 9.5, entry queue 9.5, integer number 2.4, integer type 3.5.4, priority 9.8, storage

unit 13.2, task body 9.1, task termination 9.4

9.10 Abort Statements

Abnormal termination of one or several tasks is achieved by an abort statement.

abort__statement ::= abort fasA_name |, fas/r_name|;

An abort statement causes the unconditional asynchronous termination of the named tasks. If a

task is already terminated there is no effect; if a task has not yet been activated it is terminated

and there is no other effect.

Abnormal termination of a task causes the abnormal termination of any task dependent on it. It

further causes the abnormal termination of any task dependent on any subprogram (or block)

being called directly or indirectly by the task. On completion of the abort statement each of these

tasks is terminated.

9 - 14

Tasks MIL-STD-1815
10 December 1980

If a task calling an entry is abnormally terminated it is removed from the entry queue; if the
rendezvous is already in progress the calling task is terminated but the task executing the accept
statement is allowed to complete the rendezvous normally. If there are pending entry calls (pos-
sibly timed) for the entries of a task that is abnormally terminated, an exception TASKING_ERROR
is raised for each calling task at the point where it calls the entry (including for the task presently
engaged in a rendezvous, if any); for a timed entry call, such an exception cancels the delay.

Example :

abort USER. TERMINAL.all, POOL(3);

Notes'.

An abort statement should be used only in extremely severe situations requiring unconditional ter-

mination. In less extreme cases (where the task to be terminated can be given the possibility of
executing some cleanup actions before termination), the exception FAILURE could be raised for
the task (see 1 1.5). A task may abort any task, including itself.

References :

accept statement 9.5, block 5.6, dependent task 9.4, entry call 9.5, entry queue 9.5, name 4.1 , rendezvous
9.5. subprogram 6, task 9.2, task activation 9.3, task elaboration 9.1, task termination 9.4, tasking_error
exception 11.4, timed entry call 9.7.3

9.11 Shared Variables

The normal means of communication between tasks is via entry calls.

If two tasks operate on common global variables, then neither of them may assume anything
about the order in which the other performs its operations except at the points where they syn-
chronize. Two tasks are synchronized at the start and at the end of their rendezvous. At the time of
its activation a task is synchronized with the task that causes this activation.

If shared variables are used, it is the programmer's responsibility to ensure that two tasks do not
simultaneously modify the same shared variable.

Compilers will normally assume all variables not to be shared and may consequently maintain
some of them in local registers. Whenever one must ensure that a shared variable has been
updated with its latest value, this can be achieved by calling a procedure obtained by instantiation
of the predefined generic library procedure SHARED_VARIABLE_UPDATE, for the type of the
shared variable.

generic

type SHARED is limited private;

procedure SHARED_VARIABLE_UPDATE(X : in out SHARED);

A call to such a procedure will generate no code, other than any code needed to update the shared
variable with its latest value (for example, if this value is in a register).

References'.

entry call 9.5, generic procedure 12.1, rendezvous 9.5, task 9.2, task activation 9.3

9 - 15

MIL-STD-1815

10 December 1980

Ada Reference Manual

9.12 Example of Tasking

The following example defines a buffering task to smooth variations between the speed of output

of a producing task and the speed of input of some consuming task. For instance, the producing

task may contain the statements

loop

produce the next character CHAR
BUFFER.WRITE(CHAR);
exit when CHAR = END_OF_TRANSMISSION;

end loop;

and the consuming task may contain the statements

loop

BUFFER.READ(CHAR);
consume the character CHAR

exit when CHAR = END_OF_TRANSMISSION;
end loop;

The buffering task contains an internal pool of characters processed in a round-robin fashion. The
pool has two indices, an IN_INDEX denoting the space for the next input character and an
OUT_INDEX denoting the space for the next output character.

task BUFFER is

entry READ (C : out CHARACTER);
entry WRITE (C : on CHARACTER);

end;

task body BUFFER is

POOI SIZE : constant INTEGER := 100;

POOL : array! 1 .. POOLSIZE) of CHARACTER;
COUNT : INTEGER rang© 0 .. POOL-SIZE := 0;

INJNDEX, OUTJNDEX : INTEGER range 1 .. POOLSIZE := 1;

begin

loop

S6&6Cf

when COUNT < POOI SIZE =>
accept WRITE(C : in CHARACTER) do

POOL!INJNDEX) := C;

end;

INJNDEX := INJNDEX mod POOL-SIZE + 1;

COUNT := COUNT + 1;

or when COUNT > 0 =>
accept READ(C : out CHARACTER) do

C := POOL(OUTJNDEX);
end;

OUTJNDEX := OUTJNDEX mod POOL-SIZE + 1;

COUNT := COUNT - 1;

or

terminate

end select;

end loop;

end BUFFER;

9 - 16

10. Program Structure and Compilation issues

MIL-STD-1815
10 December 1980

The overall structure of programs and the facilities for separate compilation are described in this

chapter. A program is a collection of one or more compilation units submitted to a compiler in one
or more compilations. A compilation unit can be a subprogram declaration or body, a package
declaration or body, a generic declaration, or a subunit, that is, the body of a subprogram,
package, or task declared within another compilation unit.

References:

package body 7.1, package declaration 7.1, subprogram body 6.3, subprogram declaration 6.1, subunit

10.2, task body 9.1

*5

10.1 Compilation Units - Library Units

The text of a program can be submitted to the compiler in one or more compilations. Each com-
pilation is a succession of one or more compilation units. A simple program may consist of a single

compilation units.

compilation ::= {compilation_unit(

compilation_unit ::=

context_specification subprogram_declaration

|
context_specification subprogram_body

|
context_specification package_declaration

|
context_specification package_body

|
context_specification subunit

context_specification ::= (with_clause [use_clause](

with_clause ::= with unit_name (, u/7/Y_name|;

The compilation units of a program are said to belong to a program library. A compilation unit that

is not a subunit of another unit is called a library unit. Within a program library the names of all

library units must be distinct (except, of course, that a body has the same name as the cor-

responding declaration).

The compilation units of a compilation are compiled in the given order. The effect of compiling a

subprogram or package declaration is to define (or redefine) the corresponding unit as one of the

library units. The effect of compiling a subunit, or the body of a subprogram or package, is to define

that body. The declaration of a subprogram that is not generic need not be supplied in a compila-

tion, in which case compilation of the body serves as both the declaration and the body.

10 - 1

MIL-STD-1815

10 December 1980 Ada Reference Manual

A compilation unit is effectively declared by its presence in a compilation. For the elaboration of a

compilation unit, its context specification is first elaborated; the following subprogram declaration

or body, package declaration or body, or subunit is then elaborated. The order of elaboration of

compilation units need not be the order in which they appear in a compilation; this order of

elaboration is defined in section 10.5.

The elaboration of a context specification consists of the elaboration of its constituent with clauses

and use clauses. The only identifiers that are visible within a with clause are names of library units.

The only package names that can be listed in the use clause of a context specification are those
declared in the package STANDARD and those made visible by previous with clauses and previous

use clauses. Any with clause and any use clause given in the context specification of a sub-
program, package, or generic declaration applies also to the corresponding subprogram or package
body (whether repeated or not). Any with clause and any use clause given for a compilation unit

also applies to its subunits (if any).

The designator of a separately compiled subprogram must be an identifier (not an operator sym-
bol). However, a separately compiled function may be renamed as an operator.

A library unit that is a subprogram can be a main program in the usual sense. The means by which
the execution of a main program is initiated are not prescribed within the language definition.

Example 1 : A main program :

The following is an example of a program consisting of a single compilation unit, a procedure
printing the real roots of a quadratic equation. The predefined package TEXT_IO and the package
REAL_OPERATIONS (containing the definition of the type REAL and of the packages REAI 10

and REALFUNCTIONS) are assumed to be already present in the program library. Such packages
may be used by different main programs.

with TEXTJO, REAI OPERATIONS; use REAI OPERATIONS;
procedure QUADRATIC_EQUATION is

A, B, C, D : REAL;
use REALJO, -- defines GET and PUT for REAL

TEXTJO, -- defines PUT for strings and NEW_LINE
REAL-FUNCTIONS; - defines SORT

begin

GET(A); GET(B); GET(C);

D ;= B**2 - 4.0*A*C;
if D < 0.0 then

PUTC'lmaginary Roots.");

else

PUT("Real Roots : XI - ");

PUT((-B - SQRT(D))/(2.0*A)); PUT(" X2 = ");

PUT((-B + SQRT(D))/(2.0*A));

end if;

NEW_LINE;
end QUADRATIC_EQUATION;

Notes'.

A compilation unit may be a generic package or a generic subprogram; alternatively, it may be an

instantiation of a generic subprogram or package.

10 - 2

Program Structure and Compilation Issues

MIL-STD-1815

10 December 1980

References'.

elaboration 3.1, function 6.1, generic package 12.1, generic instantiation 12.3, generic subprogram 12.1,
identifier 2.3, operator 4.5, operator symbol 6.1, package body 7.1, package declaration 7.1, real type
3.5.6, subprogram body 6.3, subprogram declaration 6.1, subunit 10.2, use clause 8.4

10.1.1 With Clauses

The names that appear in a with clause must be the names of library units. The effect of the

elaboration of a with clause is to create an implicit declaration of the named library units at the end
of the package STANDARD; the order of these implicit declarations does not necessarily corres-

pond to the order in which the units are named in a with clause (see 10.3 and 10.5). If the name of

a library unit occurs in more than one with clause of a given context specification, only the first

occurrence is considered.

The names of library units mentioned in with clauses are directly visible (except where hidden)

within the corresponding compilation unit. In particular, the names of these library units can be
used as follows:

© If the name of a generic subprogram or package is mentioned in a with clause of a compilation

unit, instances of this generic program unit can be declared within the compilation unit.

® If the name of a (non generic) subprogram is mentioned in a with clause of a compilation unit,

this subprogram can be called within the compilation unit.

© If the name of a (non generic) package is mentioned in a with clause of a compilation unit, this

name can be used to form the names of selected components and may appear in use clauses.

With clauses define dependences among compilation units; that is, a compilation unit that men-
tions other library units in its with clauses depends on those library units. These dependences
between units have an influence on the order of compilation (and recompilation) of compilation

units, as explained in section 10.3.

Notes:

The with clauses of a compilation unit need only mention the names of those library subprograms
and packages whose visibility is actually necessary within the unit. They need not (and should not)

mention other library units that are used in turn by some of the units named in the with clause

unless these other library units are also used directly by the compilation unit prefixed by the with

clauses. For example, the implementation of the package REAI OPERATIONS may need the

operations provided by other more basic packages. The latter should not appear in the with clause

of QUADRATIC_EQUATION since these basic operations are not directly called within its body.

The name of a library unit C can be written as the selected component STANDARD.C (unless the

name STANDARD is hidden) since library units are implicitly declared in the package STANDARD.

References:

declaration 3, directly visible 8.3, elaboration 3.1, generic package 12.1, generic subprogram 12.1, hidden

8.3, name 3.1 4.1
,
package 7, package standard, program unit 7, selected component 4.1 .3, subprogram 6,

use clause 8.4, visibility 8

10 - 3

MIL-STD-1815

10 December 1980 Ada Reference Manual

10.1.2 Examples of Compilation Units.

A compilation unit can be split into a number of compilation units. For example consider the fol-

lowing program.

procedure PROCESSOR is

package D is

LIMIT : constant := 1000;
TABLE : array (1 .. LIMIT) of INTEGER;
procedure RESTART;

end D;

package body D is

procedure RESTART is

begin

for N in 1 .. LIMIT loop

TABLE(N) := N;

end loop;

end;

begin

RESTART;
end D;

procedure Q(X : INTEGER) is

use D;

begin

TABLE(X) := TABLE(X) + 1;

end Q;

begin

D.RESTART; -- reinitializes TABLE

end PROCESSOR;

The following three compilation units define a program with an equivalent effect (the broken lines

between compilation units serve to remind the reader that these units need not be contiguous tex-

ts).

Example 2 : Several compilation units :

package D is

LIMIT : constant := 1000;
TABLE : array (1 .. LIMIT) of INTEGER;
procedure RESTART;

end D;

10 - 4

Program Structure and Compilation Issues MIL-STD-1815
10 December 1980

package body D is

procedure RESTART is

begin

for N in 1 .. LIMIT loop

TABLE(N) := N;

end loop;

end;

begin

RESTART;
end D;

with D;

procedure PROCESSOR is

procedure Q(X : INTEGER) is

use D;

begin

TABLE(X) := TABLE(X) + 1;

end Q;

begin

D. RESTART; — reinitializes TABLE

end PROCESSOR;

Note that in the latter version, the package D has no visibility of outer identifiers other than the
predefined identifiers (of the package STANDARD). In particular, D does not depend on any iden-
tifier declared in PROCESSOR; otherwise D could not have been extracted from PROCESSOR in

the above manner. The procedure PROCESSOR, on the other hand, depends on D and mentions
this package in a with clause. This permits the inner occurrences of D in a use clause and in a

selected component.

These three compilation units can be submitted in one or more compilations. For example, it is

possible to submit the package specification and the package body together in a single compila-
tion.

References'.

identifier 2.3, package 7, package body 7.1, package specification 7.1, procedure 6, selected component
4.1.3, standard package C, use clause 8.4, visibility 8, with clause 10.1.1

10 - 6

MIL-STD-1815

10 December 1980 Ada Reference Manual

10.2 Subunits of Compilation Units

The body of a subprogram, package, or task declared in the outermost declarative part of another

compilation unit (either a library unit or a subunit) can be separately compiled and is then said to

be a subunit of that compilation unit. Within the subprogram, package, or task where a subunit is

declared, its body is represented by a body stub at the place where the body would otherwise

appear. This method of splitting a program permits hierarchical program development.

subunit ::=

separate (unit_name) body

body_stub ::=

subprogram_specification is separate;

|
package body identifier is separate;

I
task body identifier is separate;

Each subunit mentions the name of its parent unit, that is, the compilation unit where the cor-

responding stub is given. If the parent unit is itself a subunit, this name must be given in full as a

selected component, starting with the ancestor library unit. The names of all subunits of a given

library unit and the names of ail subunits of these subunits, and so on, must all be distinct. A
generic subprogram or package can be a subunit.

Visibility within a subunit is as at the corresponding body stub; hence the name of a library unit

that is named in a with clause of a parent unit is also directly visible within a subunit (except if it is

hidden). The context specification of the subunit may mention additional library units; these names
are directly visible within the subunit (except where they are hidden). For the elaboration of a sub-

unit, this visibility is first established, then the subunit body is elaborated.

Elaboration of a body stub has no other effect than to establish that the corresponding body is

separately compiled as a subunit and to elaborate the body of the subunit.

Note-.

The name of a library unit mentioned in the with clause of a subunit may be hidden if the same
identifier is declared within the subunit, or even within one of its parents (since library units are

implicitly declared in STANDARD). In such cases this does not affect the interpretation of the with

clauses themselves, since only names of library units can appear in with clauses.

Two subunits of different library units in the same program library need not have distinct iden-

tifiers. Their full names are distinct, in any case, since the names of library units are distinct and
since the names of all subunits of a given library unit are also distinct. By means of renaming
declarations, overloaded subprogram names that rename (distinct) subunits can be introduced.

References'.

compilation unit 10.1, declarative part 3.9, elaboration 3.1, generic package 12.1, generic subprogram
12.1, identifier 2.3, library unit 10.1, overloading a subprogram 6.6, package body 7.1, program library

10.1 10.4, renaming declaration 8.5, selected component 4.1.3, standard package C, subprogram body
6.3, task body 9.1, visibility 8, with clause 10.1.1

10 - 6

Program Structure and Compilation Issues

MIL-STD-1815

10 December 1980

10.2.1 Examples of Subunits

The procedure TOP is first written as a compilation unit without subunits.

with INPUT_OUTPUT;
procedure TOP is

type REAL is digits 10;

R, S : REAL := 1.0;

package D is

PI : constant := 3.1 41 59_2653S;
function F (X : REAL) return REAL;
procedure G (Y, Z : REAL);

<3 end D;

package body D m
some local declarations followed by

function F(X : REAL) return REAL is

begin

sequence of statements of F

end F;

procedure G(Y, Z : REAL) is

- use of INPUT_OUTPUT
begin

sequence of statements of G
end G;

end D;

procedure Q(U : in out REAL) is

use D

;

begin

U F(U);

end Q;

begin -- TOP
Q(R);

D.G(R, S);

end TOP;

The body of the package D and that of the procedure Q can be made into separate subunits of

TOP. Similarly the body of the procedure G can be made into a subunit of D as follows.

J*r

10 - 7

MIL-STD-1815
10 December 1980

Example 3:

procedure TOP is

type REAL is digits 10;

R, S : REAL := 1.0;

package D is

PI : constant := 3.141 59_26536;
function F (X : REAL) return REAL;
procedure G (Y, Z : REAL);

end D;

package body D is separate; — stub of D
procedure Q(U : in out REAL) is separate; — stub of Q

begin — TOP
Q(R);

D.G(R, S);

end TOP;

separate (TOP)

procedure Q(U : in out REAL) is

use D;

begin

U := F(U);

end Q;

separate (TOP)

package body D is

-- some local declarations followed by
function F(X : REAL) return REAL is

begin

sequence of statements of F

end F;

procedure G(Y, Z : REAL) is separate; — stub of G
end D;

with INPUT_OUTPUT;
separate (TOP.D) — full name of D
procedure G(Y, Z : REAL) is

- use of INPUT_OUTPUT
begin

sequence of statements of G
end;

Ada Reference Manual

b

10 - 8

Program Structure and Compilation Issues
MIL-STD-1815

10 December 1980

In the above example Q and D are subunits of TOP, and G is a subunit of D. The visibility in the

split version is the same as in the initial version except for one change: since INPUT_OUTPUT is

only used in G, the corresponding with clause appears for G instead of for TOP. Apart from this

change, the same identifiers are visible at corresponding program points in the two versions. For

example, the procedure TOP, the type REAL, the variables R and S, the package D and the con-

tained constant PI and subprograms F and G are visible within the subunit body of G.

References'.

constant 3.2, identifier 2.3, package 7, procedure 6, real type 3.5.6, subprogram 6, visibility 8, with clause

10.1.1

10.3 Order of Compilation

The rules defining the order in which units can be compiled are direct consequences of the visibility

rules and, in particular, of the need for a given unit to see the identifiers listed in its with clauses. A
unit must be compiled after all units whose names appear in one of its with clauses. A subprogram

or package body must be compiled after the corresponding subprogram or package declaration.

The subunits of a unit must be compiled after the unit.

The compilation units of a program can be compiled in any order that is consistent with the partial

ordering defined by the above rules.

Similar rules apply for recompilations. Any change in a compilation unit may affect its subunits. In

addition, any change in a library unit that is a subprogram declaration or package declaration may
affect other compilation units that mention its^name in their with clauses. The potentially affected

units must be recompiled. An implementation may be able to reduce the compilation costs if it

can deduce that some of the potentially affected units are not actually affected by the change.

The subunits of a unit can be recompiled without affecting the unit itself. Similarly, changes in a

subprogram or package body do not affect other compilation units (apart from the subunits of the

body) since these compilation units only have access to the subprogram or package specification.

Deviations from this rule are only permitted for inline inclusions, for certain compiler optimizations,

and for certain implementations of generic program units, as described below.

If a pragma INLINE is applied to the declaration of a subprogram declared in a package specifica-

tion, inline inclusion will only be achieved if the package body is compiled before units calling the

subprogram. In such a case, inline inclusion creates a dependence of the calling unit on the

package body and the compiler must recognize this dependence when deciding on the need for

recompilation. If a calling unit is compiled before the package body, the pragma may be ignored

by the compiler for such calls (a warning that inline inclusion was not achieved may be issued).

Similar considerations apply to a separately compiled subprogram for which an INLINE pragma is

specified.

For optimization purposes, an implementation may compile several units of a given compilation in

a way that creates further dependences among these compilation units. The compiler must then

take these dependences into account when deciding on the need for recompilations. Finally an

implementation may also introduce a dependence on the body of a separately compiled generic

program unit.

10 - 9

MIL-STD-1815
10 December 1980 Program Structure and Compilation Issues

Examples of Compilation Order.

(a) In example 2, the package body D must be compiled after the corresponding package
specification.

(b) The specification of the package D must be compiled before the procedure PROCESSOR; on
the other hand, the procedure PROCESSOR can be compiled either before or after the
package body D.

(c) In example 1, the procedure QUADRATIC_EQUATION must be compiled after the library
packages TEXTJO and REAL-OPERATIONS since they appear in its with clause. Similarly,
in example 3, the procedure G must be compiled after the package INPUT_OUTPUT, which
appears in its with clause. On the other hand INPUT_OUTPUT can be compiled either before
or after TOP.

(d) In example 3, the subunits Q and D must be compiled after the main program TOP. Similarly
the subunit G must be compiled after its parent unit D.

References :

compilation unit 10.1, generic program unit 12, inline pragma B, library unit 10.1, name 4.1, package body
7.1, package declaration 7.1, package specification 7.1, pragma 2.8, procedure 6, subprogram body 6.3,
subprogram declaration 6.1, subprogram specification 6.1, subunit 10.2, visibility rules 8, with clause
10.1.1

10.4 Program Library

Compilers must preserve tfW same degree of type safety, for a program consisting of several com-
pilation units and subunits, as for a program submitted as a single compilation unit. Consequently
a library file containing information on the compilation units of the program library must be main-
tained by the compiler. This information may include symbol tables and other information pertain-

ing to the order of previous compilations.

A normal submission to the compiler consists of the compilation unit(s) and the library file. The lat-

ter is used for checks and is updated as a consequence of the current compilation.

There should be compiler commands for creating the program library of a given program or of a given

family of programs. These commands may permit the reuse of units of other program libraries.

Finally, there should be commands for interrogating the status of the units of a program library. The
form of these commands is not specified by the language definition.

References :

compilation unit 10.1, library unit 10.1, subunit 10.2

10 - 10

Program Structure and Compilation Issues
MIL-STD-1815

10 December 1980

10.5 Elaboration of Library Units

Before the execution of a main program, all library units used by the main program are elaborated.

These library units are those which are mentioned in the with clauses of the main program and its

subunits, and in the with clauses of these library units themselves, and so on, in a transitive man-
ner.

The elaboration of these units is performed consistently with the partial ordering defined by the

dependence relations imposed by with clauses (see 10.3).

The order of elaboration of library units that are package bodies must also be consistent with any
dependence relations resulting from the actions performed during the elaboration of these bodies.

Thus if a subprogram defined in a given package is called during the elaboration of the body of

another package (that is, either during the elaboration of its declarative part or during the execu-

tion of its sequence of statements), the body of the given package must be elaborated first.

The program is illegal if no consistent order can be found (that is, if a circularity exists in the

dependence relations). If there are several possible orders, the program is erroneous if it relies on a

specific order (among the possible orders).

References :

compilation unit 10.1, declarative part 3.9, dependence relation 10.1.1, elaboration 3.1, library unit 10.1,

main program 10.1, package 7, package body 7.1, statement 5, subprogram 6, subunit 10.2, with clause

10.1

1 0.6 Program Optimization

Optimization of the elaboration of declarations and the execution of statements may be performed

by compilers. In particular, a compiler may be able to optimize a program by evaluating certain

expressions, in addition to those that are static expressions. Should one of these expressions

(whether static or not) be such that an exception would be raised by its evaluation, then the code
in that path of the program can be replaced by code to raise the exception.

A compiler may find that some statements or subprograms will never be executed, for example, if

their execution depends on a condition known to be false. The corresponding code can then be
omitted. This rule permits the effect of conditional compilation within the language.

Note'.

An expression whose evaluation is known to raise an exception need not represent an error if it

occurs in a statement or subprogram that is never executed. The compiler may warn the program-

mer of a potential error.

References'.

condition 5.3, declaration 3, elaboration 3.1, exception 1 1, expression 4.4, raise an exception 1 1.3, state-

ment 5. static expression 4.9, subprogram 6

10 - 11

11. Exceptions

MIL-STD-1815

10 December 1980

This chapter defines the facilities for dealing with errors or other exceptional situations that arise

during program execution. An exception is an event that causes suspension of normal program
execution. Drawing attention to the event is called raising the exception. Executing some actions,

in response to the occurrence of an exception, is called handling the exception.

Exception names are introduced by exception declarations. Exceptions can be raised by raise

statements, or they can be raised by subprograms, blocks, or language defined operations that

propagate the exceptions. When an exception occurs, control can be passed to a user-provided
exception handler at the end of a block or at the end of the body of a subprogram, package, or task.

4
References:

block 5.6, propagation of exception 11.4, raise statement 11.3, subprogram 6

11.1 Exception Declarations

An exception declaration defines one or more exceptions whose names can appear in raise state-

ments and in exception handlers within the scope of the declaration.

exception_declaration identifier_list : exception;

The identity of the exception introduced by an exception declaration is established at compilation
time (an exception can be viewed as a constant of some predefined enumeration type, the cons-
tant being initialized with a static expression). Hence the declaration of an exception introduces
only one exception, even if the declaration occurs in a recursive subprogram.

The following exceptions are predefined in the language and are raised in the following situations:

CONSTRAINT_ERROR When a range constraint, an index constraint, or a discriminant con-
straint is violated. This can occur in object, type, subtype, component,
subprogram, and renaming declarations; in initializations; in assign-

ment and return statements; in component associations of

aggregates; in qualified expressions, type conversions, subprogram
and entry calls, and generic instantiations. This exception is also

raised when an attempt is made to designate a component that can-
not exist under the applicable constraint, in an indexed component, a

selected component, a slice, or an aggregate. Finally, this exception is

raised on an attempt to select from or index an object designated by
an access value, if the access value is equal to null.

11 - 1

Ada Reference Manual

When the result of a predefined numeric operation does not lie within

the implemented range of the numeric type; division by zero is one

such situation. This exception need not be raised by an implementa-

tion.

When all alternatives of a select statement that has no else part are

closed.

When the dynamic storage allocated to a task is exceeded, or during

the execution of an allocator, if the available space for the collection of

allocated objects is exhausted.

When exceptions arise during intertask communication.

Examples of user-defined exception declarations :

SINGULAR : exception;

ERROR : exception;

OVERFLOW, UNDERFLOW : exception;

References:

access value 3.8, aggregate 4.3, allocator 4.8, assignment statement 5.2, component declaration 3.7, con-
straint 3.3, constraint_error exception 3.3 3.5.4 3.5.5 3.5.6 3.6.1 3.7 3.7.2 4.1.1 4.1.2 4.1.3 4.3 4.5.1

4.5.6 4.6 4.7 5.2 5.2.1 5.8 6.1 6.4.1 8.5 9.5 12.3.1 12.3.2 12.3.4 12.3.5 12.3.6 14.3.5, declaration 3.1,

discriminant constraint 3.7.2, entry call 9.5, enumeration type 3.5.3, generic instantiation 12.3, index con-
straint 3.6.1, indexed component 4.1.1, initialization 3.2 3.7 6.1, name 4.1, numeric_error exception 3.5.8

4.5.3 4.5.4 4.5.5 4.5.6 4.5.7 4.5.8, numeric operation 4.5, numeric type 3.5, object declaration 3.2,

qualified expression 4.7, raise statement 11.3, range constraint 3.5, recursive procedure 6.1, renaming
declaration 8.5, return statement 5.8, scope of a declaration 8.2, select-error exception 9.7.1 , select state-

ment 9.7, selected component 4.1.3, slice 4.1.2, static expression 4.9, storage_error exception 3.9 4.8

13.2, subprogram call 6.4, subprogram declaration 6.1, subtype declaration 3.3, tasking_error exception

9.3 9.5 9.10 11.4, task 9.1, type conversion 4.6, type declaration 3.3

MIL-STD-1815
10 December 1980

NUMERIC_ERROR

SELECT_ERROR

ST0RAGE_ERR0R

TASKING_ERROR

11.2 Exception Handlers

The response to one or more exceptions is specified by an exception handler. A handler may

appear at the end of a unit, which must be a block or the body of a subprogram, package, or task.

The word unit will have this meaning in this section.

exception_handler ::=

when exception_choice {|
exception_choice) =>

sequence_of_statements

exception_choice ::= exceptionjname |
others

An exception handler of a unit handles the named exceptions when they are raised within the

sequence of statements of this unit; an exception name may only occur once in the exception

choices of the unit. A handler containing the choice others can only appear last and can only con-

tain this exception choice; it handles all exceptions not listed in previous handlers, including excep-

tions whose names are not visible within the unit.

11 - 2

Exceptions
M1L-STD-1815

10 December 1980

When an exception is raised during the execution of the sequence of statements of a unit, the
execution of the corresponding handler (if any) replaces the execution of the remainder of the unit:

the actions following the point where the exception is raised are skipped and the execution of the
handler terminates the execution of the unit. If no handler is provided for the exception (either

explicitly or by others), the execution of the unit is abandoned and the exception is propagated
according to the rules stated in 11.4.1.

Since a handler acts as a substitute for (the remainder of) the corresponding unit, the handler has
the same capabilities as the unit it replaces. For example, a handler within a function body has
access to the parameters of the function and may execute a return statement on its behalf.

Example-.

begin

sequence of statements
exception

when SINGULAR
|
NUMERIC_ERROR =>

PUT(" MATRIX IS SINGULAR ");

when others =>
PUT(" FATAL ERROR ");

raise ERROR;
end;

References:

block 5.6, function 6.1, package body 7.1, parameter declaration 6.1, program unit 7, return statement 5.8,
statement 5.1, subprogram body 6.3, task body 9.1, visible 8.1

1 1 .3 Raise Statements

An exception can be raised explicitly by a raise statement.

raise_statement ::= raise [exceptionjnarne]-,

For the execution of a raise statement with an exception name, the identity of the exception is

established, and then the exception is raised. A raise statement without an exception name can
only appear in an exception handler (but not in a nested subprogram, package or task). It raises
again the exception that caused transfer to the handler.

Examples'.

raise SINGULAR;
raise NUMERIC_ERROR;
raise;

raise POOL(K)'FAILURE;

References-.

explicitly raising a predefined exception

see section 11.5

name 4.1

11 - 3

M1L-STD-1815

10 December 1980 Ada Reference Manual

11.4 Dynamic Association of Handlers with Exceptions

When an exception is raised, normal program execution is suspended and control is transferred to

an exception handler. The selection of this handler depends on whether the exception is raised

during the execution of statements or during the elaboration of declarations.

11.4.1 Exceptions Raised During the Execution of Statements

The handling of an exception raised during the execution of a sequence of statements depends on
the innermost block or body that encloses the statement.

(a) If an exception is raised in the sequence of statements of a subprogram body that does not
contain a handler for the exception, execution of the subprogram is abandoned and the same
exception is raised again at the point of call of the subprogram. In such a case the exception
is said to be propagated. The predefined exceptions are exceptions that can be propagated by
the language defined constructs. If the subprogram is itself the main program, the execution
of the main program is abandoned.

(b) If an exception is raised in the sequence of statements of a block that does not contain a

handler for the exception, execution of the block is abandoned and the same exception is

raised again in the unit whose sequence of statements includes the block. In such a case,

also, the exception is said to be propagated.

(c) If an exception is raised in the sequence of statements of a package body that does not con-
tain a handler for the exception, the elaboration of the package body is abandoned. If the
package appears in a declarative part (or is a subunit) the exception is raised again in the unit

enclosing the package body (or enclosing the body stub that corresponds to the subunit). If

the package is a library unit, the execution of the main program is abandoned.

(d) If an exception is raised in the sequence of statements of a task body that does not contain a

handler for the exception, the execution of the task is abandoned; the task is terminated. The
exception is not further propagated.

(e) If a local handler has been provided, execution of the handler replaces the execution of the
remainder of the unit (see 11.2).

(f) A further exception raised in the sequence of statements of a handler (but not in a nested
block) causes execution of the current unit to be abandoned; this further exception is

propagated if the current unit is a subprogram body, a block, or a package body as in cases (a),

(b), and (c).

11 - 4

Exceptions
MIL-STD-1815

10 December 1980

Example :

procedure P is

ERROR : exception;

procedure R;

procedure Q is

begin

R;

— exception situation (2)

exception

when ERROR =>

end Q;

procedure R is

begin

end R;

begin

Q;

exception

when ERROR =>

end P;

handler E2

exception situation (3)

exception situation (1)

handler El

The following situations can arise:

(1) If the exception ERROR is raised in the sequence of statements of the outer procedure P, the
handler El provided within P is used to complete the execution of P.

(2) If the exception ERROR is raised in the sequence of statements of Q, the handler E2 provided
within Q is used to complete the execution of Q. Control will be returned to the point of call of
Q upon completion of the handler.

(3) If the exception ERROR is raised in the body of R, called by Q, the execution of R is aban-
doned and the same exception is raised in the body of Q. The handler E2 is then used to com-
plete the execution of Q, as in situation (2).

Note that in the third situation, the exception raised in R results in (indirectly) passing control to a
handler that is local to Q and hence not enclosed by R. Note also that if a handler were provided
within R for the choice others, situation (3) would cause execution of this alternative, rather than
direct termination of R.

Lastly, if ERROR had been declared in R, rather than in P, the handlers El and E2 could not
provide an explicit handler for ERROR since this identifier would not be visible within the bodies of
P and Q. In situation (3), the exception could however be handled in Q by providing a handler for
the choice others.

11 - 5

MIL-STD-1815

10 December 1980
Ada Reference Manual

Example :

function FACTORIAL (N : NATURAL) return FLOAT is

begin

if N = 1 then

return 1 .0;

else

return FLOAT(N) * FACT0RIAL(N-1);

end if;

exception

when NUMERIC_ERROR => return FLOAT' LARGE;
end FACTORIAL;

If the multiplication raises NUMERIC_ERROR then FLOAT'LARGE is returned by the handler. This
value will cause further NUMERIC_ERROR exceptions to be raised in the remaining activations of

the function, so that for large values of N the function will ultimately return the value
FLOAT'LARGE.

References-.

block 5.6, body 6.3 7.1 , body stub 1 0.2, declarative part 3.9, elaboration 3.1 , identifier 2.3, library unit 1 0.1

10.1.1, local 8.3, main program 10.1, multiplication operation 4.5.5, overflow 4.5.8, package body 7.1,

procedure 6, statement 5.1 , subprogram body 6.3, subprogram call 6.4, subunit 1 0.2, task body 9.1 , visible

8.1

1 1 .4.2 Exceptions Raised During the Elaboration of Declarations

If an exception occurs during the elaboration of the declarative part of a block or body, or during

the elaboration of a subprogram, package, or task declaration, this elaboration is abandoned. The
exception is propagated to the unit causing the elaboration, if there is one:

(a) An exception raised in the declarative part of a subprogram is propagated to the unit calling

the subprogram, unless the subprogram is the main program itself, in which case execution of

the program is abandoned.

(b) An exception raised in the declarative part of a block is propagated to the unit whose state-

ments include the block.

(c) An exception raised in the declarative part of a package body is propagated to the unit

enclosing the body (or body stub, for a subunit) unless the package is a library unit, in which
case execution of the program is abandoned.

(d) An exception raised in the declarative part of a task body is propagated to the unit that caused
the task activation.

(e) An exception raised during the elaboration of a subprogram, package, or task declaration is

propagated to the unit enclosing this declaration, unless the subprogram or package declara-

tion is the declaration of a library unit, in which case execution of the program is abandoned.

11 - 6

Exceptions
MIL-STD-1815

10 December 1980

Example :

declare

begin

declare

N : INTEGER := F(); - F may raise ERROR
began

exception

when ERROR => — handler El

end;

exception

when ERROR => — handler E2
end;

if the exception ERROR is raised in the declaration of N, it is handled by E2

References'.

body 6.3 7.1, body stub 10.2, declaration 3.1, declarative part of block 5.6, elaboration of declaration 3.1

3.9, library unit 10.1.1, main program 10.1, package body 7.1, package declaration 7.1, program unit 7

,

statement 5, subprogram declaration 6.1, subunit 10.2, task activation 9.3, task declaration 9.1

11.5 Exceptions Raised During Task Communication

An exception can be propagated to a task communicating, or attempting to communicate, with

another task.

When a task calls an entry of another task, the exception TASKING_ERROR is raised in the calling

task, at the place of the call, if the called task terminates before accepting the entry call or is

already terminated at the time of the call.

A rendezvous can be terminated abnormally in two cases:

(a) When an exception is raised inside an accept statement and not handled locally. In this case,

the exception is propagated both to the unit containing the accept statement, and to the call-

ing task at the point of the entry call.

A different treatment is used for the special exception attribute FAILURE as explained in sec-

tion 1 1 .6 below.

(b) When the task containing the accept statement is terminated abnormally (for example, as the

result of an abort statement). In this case, the exception TASKING_ERROR is raised in the

calling task at the point of the entry call.

On the other hand, abnormal termination of a task issuing an entry call does not raise an exception

in the called task. If the rendezvous has not yet started, the entry call is cancelled. If the rendez-

vous is in progress, it is allowed to complete, and the called task is unaffected.

11 - 7

MIL-STD-1815
10 December 1980

Ada Reference Manual

References :

accept statement 9.5, entry 9.5, entry call 9.5, rendezvous 9.5, task 9.1, task termination 9.3 9.4

11.6 Raising the Exception Failure in Another Task

Each task has an attribute named FAILURE which is an exception. Any task can raise the FAILURE
exception of another task (say T) by the statement

raise T' FAILURE;

The execution of this statement has no direct effect on the task issuing the statement (unless, of

course, it raises FAILURE for itself). This exception is the only exception that can be raised

explicitly by one task in another task.

For the task receiving the FAILURE exception, this exception is raised at the current point of execu-
tion, whether the task is actually executing or suspended. If the task is suspended on a delay
statement, the corresponding wait is cancelled. If the task has issued an entry call (or a timed
entry call) the call is cancelled if the rendezvous has not yet started; alternatively the rendezvous is

allowed to complete if it has already started; in both cases the called task is unaffected. If the task

is suspended by an accept or select statement, execution of the task is scheduled (according to the
usual priority rules, see 9.8) in order to allow the exception to be handled. Finally, if the exception
FAILURE is received within an accept statement and not handled locally, the rendezvous is ter-

minated and the exception TASKING_ERROR is raised in the calling task at the place of the entry
call.

Within the body of a task or task type T (and only there) there may be handlers for the exception
name T'FAILURE.

Note-.

The name FAILURE is not reserved. Hence it could be declared as any entity, including an excep-
tion, No conflict can arise with the attribute FAILURE because of the distinct notation for

attributes.

References-.

accept statement 9.5, attribute 4.1.4, delay statement 9.6, entry call 9.5, rendezvous 9.5, select statement
9.7, statement 5, suspended task 9.5 9.6 9.7, task 9.1, task scheduling 9.8, wait 9.7.1

1 1 .7 Suppressing Checks

The detection of the conditions under which some predefined exceptions are raised (as a

preliminary to raising them) may be suppressed within a block or within the body of a subprogram,
package, or task. This suppression may be achieved by the insertion of a SUPPRESS pragma in the
declarative part of such a unit. The form of this pragma is as follows:

pragma SUPPRESS (c/?ec/r_name [, [ON =>] name));

11 - 8

Exceptions
MIL-STD-1815

10 December 1980

The first name designates the check to be suppressed: the second name is optional and may be

either an object name or a type name. In the absence of the optional name, the pragma applies to

all operations within the unit considered. Otherwise its effect is restricted to operations on the

named object or to operations on objects of the named type.

The following checks correspond to situations in which the exception CONSTRAINT_ERROR may
be raised:

ACCESS_CHECK Check that an access value is not null when attempting to select

from or index the object designated by the access value.

DISCRIMINANT_CHECK When accessing a record component, check that it exists for the

current discriminant value. Check that a value specified for a dis-

criminant satisfies or is compatible with a discriminant constraint.

INDEX_CHECK Check that a specified index value or range of index values satisfies

an index constraint or is compatible with an index type.

LENGTH_CHECK Check that the number of components for an index is equal to a

required number.

RANGE_CHECK Check that a value satisfies a range constraint or that an index con-

straint, discriminant constraint, or range constraint is compatible

with a type mark.

The following checks correspond to situations under which the exception NUMERIC_ERROR is

raised:

DIVISION_CHECK Check that the second operand is not zero for the operations /, rem
and mod.

OVERFLOW_CHECK Check that the result of a numeric operation does not overflow.

The following check corresponds to situations under which the exception STORAGE_ERROR is

raised:

STORAGE_CHECK Check that execution of an allocator does not require more space

than is available for a collection. Check that the space available for

a task or program unit has not been exceeded.

The SUPPRESS pragma indicates that the corresponding run time check need not be provided.

The occurrence of such a pragma within a given unit does not guarantee that the corresponding

exceptions will not arise, since the pragma is merely a recommendation to the compiler, and since

the exceptions may be propagated by called units. Should an exception situation occur when the

corresponding run time checks are suppressed, the program would be erroneous (the results would

be unpredictable).

Examples :

pragma SUPPRESS(RANGE_CHECK);
pragma SUPPRESS(INDEX_CHECK, ON => TABLE);

11 - 9

MIL-STD-181

5

10 December 1980 Ada Reference Manual

Note :

For certain implementations, it may be impossible, or too costly to suppress certain checks. The
corresponding SUPPRESS pragmas can be ignored.

References'.

access value 3.8, array component 3.6, assignment statement 5.2, block 5.6, declarative part 3.9, division

operation 4.5.5, index range 3.6, mod operator 4.5,5, name 4.1, object name 3.2, overflow 3.5.8 4.5.8,

package body 7.1, pragma 2.8, record component 3.7, record discriminant 3.7.1, rem operator 4.5.6, sub-
program body 6.3, task body 9.1, type declaration 3, type name 3.3

1 1 .8 Exceptions and Optimization

The purpose of this section is to specify the conditions under which certain operations can be
invoked either earlier or later than indicated by the exact place in which their invocation occurs in

the program text. The operations concerned comprise any function (including operators) whose
value depends only on the values of its arguments (the actual parameters) but which raises an
exception for certain argument values (this exception depending only on the value of the argu-
ments). Other operations also included are the basic operations involved in array indexing, slicing,

and component selection, including the case of objects designated by access values.

If it were not for the fact that these operations may propagate exceptions, they could be invoked as
soon as the values of their arguments were known, since the value returned depends only on the
argument values. However the possible occurrence of exceptions imposes stricter limits upon the

allowable displacements of the points where such operations are invoked as explained below:

® Consider the statements and expressions contained in the sequence of statements of a block,

body, or accept statement (but excluding any nested inner block, body, or accept statement).

For a given operation, choose a subset of these statements and expressions such that if any
statement (or expression) in the subset is executed (or evaluated), one or more invocations of

the given operation is required (according to rules stated elsewhere than in this section). Then,
within the chosen subset the operation can be invoked as soon as the values of its arguments
are known, even if this invocation may cause an exception to be propagated. The operation
need not be invoked at all if its value is not needed, even if the invocation would raise an
exception. If the operation may raise an exception and if the value is needed, the invocation

must occur no later than the end of the sequence of statements of the enclosing, block, body
or accept statement.

© The rules given in section 4.5 for operators and expression evaluation leave the order of

evaluation of the arguments of such operations undefined except for short circuit control

forms. Also, in the case of a sequence of operators of the same precedence level (and in the

absence of parentheses imposing a specific order), these rules allow any order of evaluation

that yields the same result as the textual (left to right) order. Any reordering of evaluation

allowed by these rules is permitted even if some of the operations may propagate exceptions,

as long as no further exception can be introduced.

11 - 10

Exceptions
MIL-STD-1815

10 December 1980

Notes:

The above rules guarantee that an operation is not moved across a return, an exit, a goto, a raise,

or an abort statement. Moreover, an optimization cannot move an operation in such a way that an
exception would be handled by a different handier.

Whenever the evaluation of an expression may raise an exception for an allowed order of evalua-
tion, it is the programmer's responsibility to impose a specific order by explicit parentheses. In

their absence, a compiler is allowed to choose any order satisfying the above rules, even if this

order removes the risk of an exception being raised. In addition, the code produced by different

compilers may raise different exceptions for a given expression since the order of evaluation of

arguments is not defined.

References:

accept statement 9.5, access value 3.8, actual parameter 6.4, array indexing 4.1.1, block 5.6, body 6.3 7.1

,

expression 4.4, expression evaluation 4.5, function 6.1, operator 4.5, propagation of exception 11.4.1,
selected component 4.1.3, slice 4.1.2, statement 5

MIL-STD-1815
10 December 1980

12. Generic Program Units

Subprograms and packages can be generic. Generic program units are templates of program units

and are often parameterized. Being templates, they cannot be used directly as ordinary sub-

programs or packages; for example a generic subprogram cannot be called. Instances (that is,

copies) of the template are obtained by generic instantiation. The resulting subprograms and
packages are ordinary program units, which can be used directly.

A generic subprogram or package is defined by a generic declaration. This form of declaration has

a generic part, which may include the definition of generic formal parameters. An instance of a

generic unit, with appropriate actual parameters for the generic formal parameters, is obtained as

the result of a generic subprogram instantiation or a generic package instantiation.

References'.

declaration 3.1, generic actual parameter 12.3, generic declaration 12.1, generic formal parameter 12.1,

generic part 12.1, package 7, program unit 6 7 9, subprogram 6

12.1 Generic Declarations

A generic declaration includes a generic part and declares a generic subprogram or a generic

package. The generic part may include the definition of generic parameters.

For the elaboration of a generic declaration the subprogram designator or package identifier is first

introduced and can from then on be used as the name of the corresponding generic program unit.

The generic part is next elaborated. Finally, the subprogram or package specification is established

as the template for the specification of the corresponding generic program unit.

generic_subprogram_declaration ::=

generic_part subprogram_specification;

generic_package_declaration ::=

generic_part package_specification;

generic_part ::= generic |generic_formal_parameterf

generic_formal_parameter ::=

parameter_declaration;

|
type identifier [discriminant_part] is generic_type_definition;

|
with subprogram_specification [is name];

I
with subprogram_specification is <>;

generic_type_definition

(<>)
|
range <> |

delta <> |
digits <>

|
array_type_definition

|
access_type_definition

|
private_type_definition

12 - 1

MIL-STD-1815

10 December 1980
Ada Reference Manual

For the elaboration of a generic part, the generic formal parameters (if any) are elaborated one by
one in the given order. A generic parameter may only be referred to by another generic parameter
of the same generic part if it (the former parameter) is a type and appears first.

Expressions appearing in a generic part are evaluated during the elaboration of the generic part,

excepting any primary referring to a type that is a generic parameter (for example, an attribute of

such a type); such primaries are evaluated during the elaboration of generic instantiations.

References to generic parameters of any form (not only types) may occur in the specification and
body of a generic subprogram or package. However neither a choice, nor an integer type definition,

nor an accuracy constraint, may depend on a generic formal parameter.

Examples of generic parts :

generic -- parameterless

generic

SIZE : NATURAL;

generic

LENGTH : INTEGER := 200; - default value

generic

type ENUM is (<>);

with function IMAGE (E : ENUM) return STRING is ENUM'IMAGE;
with function VALUE (S : STRING) return ENUM is ENUM'VALUE;

Examples of generic subprogram declarations'.

generic

type ELEM is private;

procedure EXCHANGED, V : in out ELEM);

generic

type ITEM is private;

with function "*"(U, V : ITEM) return ITEM is <>;
function SQUARING(X : ITEM) return ITEM;

Example of generic package declaration'.

generic

type ITEM is private;

type VECTOR is array (INTEGER range <>) of ITEM;
with function SUM(X, Y : ITEM) return ITEM;

package ON_VECTORS is

function SUM (A, B : VECTOR) return VECTOR;
function SIGMA (A : VECTOR) return ITEM;

end;

Note-.

A subprogram or package specification given in a generic declaration is the template for the
specifications of the corresponding subprograms or packages obtained by generic instantiation.

Hence the template specification is not elaborated during elaboration of the generic declaration

(this specification is merely established as being the template specification). The subprogram or

package specification obtained by instantiation of the generic program unit is elaborated as part of

this instantiation.

12 - 2

Generic Program Units

MIL-STD-1815
10 December 1980

When a template is established all names occurring within it must be identified in the context of

the generic declaration.

References :

accuracy constraint 3.5.6, attribute 4.1.4, designator 6.1, elaboration 3.1, expression 4.4, identifier 2.3,

integer type definition 3.5.4, name 4.1, object 3.2, package 7, package identifier 7.1
,
package specification

7.1, primary 4.4, program unit 7, subprogram 6.1, subprogram specification 6.1, type 3.3

12.1.1 Parameter Declarations in Generic Parts

The usual forms of parameter declarations available for subprogram specifications can also appear

in generic parts. Only the modes in and in out are allowed (the mode out is not allowed for generic

parameters). If no mode is explicitly given, the mode in is assumed.

A generic parameter of mode in acts as a constant; its value is a copy of the value provided by the

corresponding generic actual parameter in a generic instantiation.

A generic parameter of mode in out acts as an object name renaming the corresponding generic

actual parameter supplied in a generic instantiation. This actual parameter must be a variable of a

type for which assignment is available (in particular, it cannot be a limited private type). The actual

parameter cannot be a component of an unconstrained object with discriminants, if the existence

of the component depends on the value of a discriminant.

References'.

assignment 5.2, constant 3.2, generic actual parameter 12.3, in mode 6.1, in out mode 6.1, object name
3.2, out mode 6.1, parameter declaration 6.1, subprogram specification 6, type 3.3

12.1.2 Generic Type Definitions

The elaboration of a generic formal parameter containing a generic type definition proceeds

according to the same rules as that of a type declaration (see 3.3). Generic type definitions may be

array, access, or private type definitions, or one of the forms including a box (that is, the compound
symbol <>).

Within the specification and body of a generic program unit, the operations available on values of a

generic formal type are those associated with the corresponding generic type definition, together

with any given by generic formal subprograms.

For an array type definition, the usual operations on arrays (such as indexing, slicing, assignment,

equality, and so on), and the notation for aggregates, are available. For an access type definition,

the usual operations on access types are available; for example allocators can be used.

12 - 3

MIL-STD-1815
10 December 1980 Ada Reference Manual

For a limited private type no operation is available; for a private type, assignment, equality and ine-

quality are available. Additional operations can be supplied as generic formal subprograms. The
only form of constraint applicable to a generic formal type that is a (limited) private type is a dis-

criminant constraint in the case where the generic formal parameter includes a discriminant part.

The generic type definitions including a box correspond to the major forms of scalar types:

Syntactic Form Meaning

(<»
range <>
digits <>
delta <>

any discrete type

any integer type

any floating point type

any fixed point type

For each generic formal type declared with one of these forms, the predefined operators and the
function ABS of the corresponding scalar type are available (see 4.5). The attributes defined for

the corresponding scalar types (see 3.5) are also available, excepting the attributes IMAGE and
VALUE (see appendix A).

Examples of generic formal types :

type ITEM is private;

type BUFFER(LENGTH : NATURAL) is limited private;

type ENUM is (<>);
type I NT is range <>;
type ANGLE is delta <>;
type MASS is digits <>;

type TABLE is array (ENUM) of ITEM;

Notes'.

Since the attributes IMAGE and VALUE are not already available for the generic type definitions

including a box, extra generic formal subprograms must be supplied for these attributes where
they are needed.

References'.

abs function 4.5.7, access type definition 3.8, aggregate notation 4.3, allocator 4.8, array type definition

3.6, array operations 4.5, assignment 5.2, attribute 4.1.4, constraint 3.3, discriminant constraint 3.7.2, dis-

criminant part 3.7.1, elaboration 3.1, equality 4.5.2, formal parameter 6.4, image attribute A, incomplete
access type predeclaration 3.8, indexing 3.6.1, inequality 4.5.2, limited private type 7.4.2, predefined
operators C, private type definition 7.4, scalar type 3.5, slicing 4.1.2, subprogram 6.1 , type declaration 3.3,

value attribute A

12.1.3 Generic Formal Subprograms

A generic formal parameter that includes a subprogram specification defines a generic formal sub-
program. Such subprograms may have (non generic) parameters and results of any visible type,
including types that are previously declared generic formal types.

12 - 4

Generic Program Units
MIL-STD-1815
10 December 1980

If the subprogram specification is followed by the reserved word is and by either a name or a box,

an actual parameter is optional for this generic formal subprogram. If a name is used, the named

subprogram is used by default in any generic instantiation that does not contain an explicit actual

parameter for this generic formal subprogram. If a box is used, a default actual subprogram that

matches the specification of the generic formal subprogram may be selected at the point of

generic instantiation (see 12.3.6).

For the elaboration of a generic formal parameter that includes a subprogram specification, the

subprogram specification is first elaborated; this elaboration introduces the names of any

parameters and identifies the corresponding types (which may be generic types). The identity of

any name that follows the reserved word is is then established (it may be an attribute of a generic

type). This subprogram name must match the subprogram specification according to the rules

given in section 12.3.6.

Examples of generic formal subprograms'.

with function INCREASE(X : INTEGER) return INTEGER;

with function SUM(X, Y : ITEM) return ITEM;

with function "+"(X, Y : ITEM) return ITEM is <>;

with function IMAGE(X : ENUM) return STRING is ENUM'IMAGE;

with procedure UPDATE is DEFAULT__UPDATE;

References :

generic actual parameter 12.3, name 4.1, parameter 6.1, subprogram declaration 6.1, subprogram

specification 6.1, type 3.3, visible 8.1

12.2 Generic Bodies

The body of a generic subprogram or package is a template for the bodies of the corresponding

program units obtained by generic instantiation. The only effect of the elaboration of a generic

body is to establish this body as the template to be used for the corresponding instantiations.

Examples of generic subprogram bodies'.

procedure EXCHANGE(U, V : in out ELEM) is

T : ELEM; — the generic formal type

begin

T := U; U := V; V := T;

end EXCHANGE;

function SQUARING(X : ITEM) return ITEM is

begin

return X*X; — the formal operator "*"

end;

12 - 5

MIL-STD-1815
10 December 1980

Ada Reference Manual

Example of a generic package body.

package body ON_VECTORS is

function SUM(A, B : VECTOR) return VECTOR is

RESULT : VECTOR(A’RANGE); — the formal type VECTOR
begin

for N in A'RANGE loop
RESULT(N) := SUM(A(N), B(N)); — the formal function SUM

end loop;

return RESULT;
end;

function SIGMA(A : VECTOR) return ITEM is

TOTAL : ITEM := A(A' FIRST); - the formal type ITEM
begin

for N in A'FiRST + 1 .. A'LAST loop
TOTAL ?UM(TOTAL, A(N)); — the formal function SUM

end loop;

return TOTAL;
end;

end;

References-.

elaboration 3.1 3.9, package 7, program unit 7, subprogram 6

12.3 Generis instantiation

An instance of a generic program unit is obtained as the result of the elaboration of a generic sub-
program instantiation or package instantiation.

generic_subprogram_instantiation ::=

procedure identifier i§ genericJnstantiation;

|
function designator is genericJnstantiation;

generic_packageJnstantiation

package identifier is genericJnstantiation;

genericJnstantiation ::=

new name [(generic_association {, generic_association })]

generic_association

[JormaLparameter =>] generic_actual_parameter

generic_actual_parameter ::=

expression
|
subprogram

|
subtypejndication

A generic actual parameter must be supplied for each generic formal parameter unless the cor-
responding generic part allows a default to be used. Generic associations can be given in positional
form or in named form as for subprogram calls (see 6.4). Each generic actual parameter must
match the corresponding generic formal parameter. An object matches an object; a subprogram or
an entry matches a subprogram; a type matches a type. The detailed matching rules are given in

subsections below.

12 - 6

Generic Program Units MIL-STD-1815

10 December 1980

For the elaboration of a generic subprogram instantiation or package instantiation, the designator

of the procedure or function, or the identifier of the package is first introduced, and the generic

instantiation is then elaborated. The designator or identifier can be used as the name of the

instantiated unit from then on.

The elaboration of a generic instantiation first creates an instance of the template defined by the

generic program unit, by replacing every occurrence of a generic formal parameter in both the

specification and body of the unit by the corresponding generic actual parameter. This instance is

a subprogram or package whose specification and body are then elaborated in this order according

to the usual elaboration rules applicable to such entities (see 6.1 and 6.3 for subprograms, 7.2

and 7.3 for packages). Note however, that any identifier other than a generic parameter and which

occurs within the generic declaration or body names an entity which is visible at the point where it

occurs with the generic declaration or body (not at the point of instantiation).

Examples of generic instantiations :

procedure SWAP is new EXCHANGE(ELEM => INTEGER);

procedure SWAP is new EXCHANGE(CHARACTER); - SWAP is overloaded

function SQUARE is new SQUARING (INTEGER); - "*" of INTEGER used by default

function SQUARE is new SQUARING (MATRIX, MATRIX-PRODUCT);

package INT_VECTORS is new ON_VECTORS(INTEGER, TABLE, '+");

Examples of uses of instantiated units :

SWAP(A, B);

A := SQUARE(A);

T : TABLE(1 .. 5) := (10, 20, 30, 40, 50);

N : INTEGER := INT_VECTORS.SIGMA(T); - 150

use INT-VECTORS;

References'.

elaboration 3.1 3.9, entry 9.5, function 6, generic actual parameter 12.3, generic formal parameter 12.1,

identifier 2.3, name 4.1, named parameter association 6.4, object 3.2, package 7, package body 7.1,

package specification 7.1
,
parameter 6.1

,
positional parameter association 6.4, subprogram 6, subprogram

body 6.1, subprogram call 6.4, subprogram specification 6.1, type 3.3

12.3.1 Matching Rules for Formal Objects

An expression of a given type matches a generic formal parameter of the same type; it must

satisfy any constraint imposed on the generic formal parameter otherwise the exception

CONSTRAINT-ERROR is raised by the generic instantiation.

12 - 7

MIL-STD-1815
10 December 1980 Ada Reference Manual

An expression used as a generic actual parameter of mode in out must be a variable name (an
expression that is a type conversion is not allowed as a generic actual parameter if the mode is in
out).

References :

constraint 3.3, constraint_error exception 11.1, expression 4.4, in out mode 6.1, type 3.3, type conversion
4.6, variable name 4

12.3.2 Matching Rules for Formal Private Types

A generic formal private type is matched by any type other than an unconstrained array type, in the
following conditions:

® If the formal type is limited, the actual type can be any type (including a task type); if the for-
mal type is not limited, assignment and the comparison for equality or inequality must be
available for the actual type.

® If the formal type has a discriminant part, the actual type must have the same discriminants:
the discriminant names, subtypes, and any default values must be the same and in the same
order. The exception CONSTRAINT_ERROR is raised at the place of the generic instantiation
if the constraint or default values differ.

References'.

assignment 5.2, constraint 3.3, constraint-error exception 11.1, discriminant part 3.7.1 , equality 4.5.2, ine-
quality 4.5.2, limited generic formal type 12.1.2, subtype 3.3, task type 9.1, type 3.3, unconstrained array
type 3.6

12.3.3 Matching Rules for Formal Scalar Types

A generic formal type defined by (<>) is matched by any discrete type (that is, any enumeration or
integer type). A generic formal type defined by range <> is matched by any integer type. A
generic formal type defined by digits <> is matched by any floating point type. A generic formal
type defined by delta <> is matched by any fixed point type. No other matches are possible for
these generic formal types.

References'.

delta 3.5.9, digits 3.5.7, discrete type 3.5 3.5.5, enumeration type 3.5.1, fixed point type 3.5.9, floating
point type 3.5.7, integer type 3.5.4

12 - 8

Generic Program Units

MIL-STD-1 815

10 December 1980

12.3.4 Matching Rules for Formal Array Types

w>

A formal array type is matched by an actual array type with the same number of indices.

If any of the index and component types of the formal array type is itself a formal type, its name is

replaced by the name of the corresponding actual type. All such substitutions having been

achieved, a formal array type is matched by an actual array type if the following conditions are

satisfied:

• The component type and constraint must be the same for the formal array type as for the

actual array type.

• For each index position, the index subtype must be the same for the formal array type as for

the actual array type.

• Either both array types must be unconstrained or, for each index position, the index constraint

must be the same for the formal array type as for the actual array type.

The exception CONSTRAINT_ERROR is raised during the elaboration of a generic instantiation if

the constraints on the component type are not the same, or if the index subtype, or the index con-

straint for any given index position are not the same for the formal array type as for the actual array

type.

Example'.

— given the generic package

generic

type ELEM
type INDEX
type VECTOR
type TABLE

package P is

is private;

is (<>);

is array (INDEX range <>) of ELEM;
is array (INDEX) of ELEM;

end;

and the types

type MIX is array (COLOR range <>) of BOOLEAN;
type OPTION is array (COLOR) of BOOLEAN;

then MIX can match VECTOR and OPTION can match TABLE
— but not the other way round:

package Q is new P(ELEM => BOOLEAN, INDEX => COLOR,
VECTOR => MIX, TABLE => OPTION);

References'.

array 3.6, array index 3.6, component type 3.6, constraint 3.3, constraint-error exception 11.1,

unconstrained array type 3.6

12 - 9

MIL-STD-1 8 1

5

10 December 1980
Ada Reference Manual

12.3.5 Matching Rules for Formal Access Typos

If the type of the objects designated by values of the formal access type is itself a formal type, its

name is replaced by the name of the corresponding actual type. Any such substitution having been
achieved, a formal access type is matched by an actual access type if the type of the designated
objects is the same in both the formal and the actual access types.

If a constraint is specified in the generic type definition for the type of the objects designated by
the access type, the same constraint must exist for the actual access type, otherwise the exception
CONSTRAINT_ERROR is raised at the place of the generic instantiation.

Example :

the formal types

generic

type NODE is private;

type LINK is access NODE;
package P is

end;

can be matched by the actual types

type CAR;
type CAR_NAME is access CAR;

type CAR is

record

PRED, SUCC : CAR_NAME;
NUMBER : LICENSE_NUMBER;
OWNER : PERSON;

end record;

in the generic instantiation

package R is new P(NODE => CAR, LINK => CAR_NAME);

References :

access type 3.8, constraint 3.3, constraint_error exception 11.1, object 3.2, type 3.3

o

12.3.6 Matching Rules for Formal Subprograms

Any occurrence of the name of a formal type in the formal subprogram specification is replaced by
the name of the corresponding actual type or subtype. Any such substitution having been
achieved, a formal subprogram is matched by an actual subprogram that has parameters in the

same order, of the same mode and type, and with the same constraints. For functions, the result

type and constraints must be the same. Parameter names and the presence or absence of default

values are ignored for this matching. Should any constraint not match, the exception

CONSTRAINT_ERROR is raised at the place of the generic instantiation.

12 - 10

Generic Program Units

MIL-STD-1815

10 December 1980

If a box appears after the reserved word is in the definition of the generic formal subprogram, the

corresponding actual subprogram can be omitted if a subprogram with the same designator and

with a matching specification is visible at the place of the generic instantiation; this subprogram

(there must only be one) is then used by default.

Example'.

— given the generic function specification

generic

type ITEM is private;

with function "*" (U, V : ITEM) return ITEM is <>;

function SQUARING(X : ITEM) return ITEM;

and the function

function MATRIX_PRODUCT(A, B : MATRIX) return MATRIX;

-- the following instantiations are possible

function SQUARE is new SQUARING(MATRIX, MATRIX_PRODUCT);
function SQUARE is new SQUARINGONTEGER, "*");

function SQUARE is new SQUARING! INTEGER);

— the last two instantiations are equivalent

Note'.

The matching rule for formal subprograms is the same as the matching rule given for subprogram

renaming declarations (see 8.5).

References'.

constraint 3.3, constraint_error exception 1 1.1, function 6, name 4.1, parameter 6.2, parameter mode 6.1,

renaming declaration 8.5, subprogram 6, subprogram specification 6.1, subtype 3.3, type 3.3, visibility 8.1

8

12.3.7 Matching Rules for Actual Derived Types

A formal generic type cannot be a derived type. On the other hand, an actual type may be a derived

type, in which case the matching rules are the same as if its parent type were the actual type, sub-

ject to any constraints imposed on the derived type.

References'.

constraint 3.3, derived type 3.4, parent type 3.4

12 - 11

MIL-STD-1815
10 December 1980 Ada Reference Manual

12.4 Example of a Generic Package

The following example provides a possible formulation of stacks by means of a generic package.
The size of each stack and the type of the stack elements are provided as generic parameters.

generic

SIZE : NATURAL;
type ELEM is private;

package STACK is

procedure PUSH (E ; in ELEM);
procedure POP (E : out ELEM);
OVERFLOW, UNDERFLOW : exception;

end STACK;

package body STACK is

SPACE ; array (1 .. SIZE) of ELEM;
INDEX : INTEGER range 0 .. SIZE := 0;

procedure PUSH(E : in ELEM) is

begin

if INDEX = SIZE then

raise OVERFLOW;
end if;

INDEX := INDEX + 1;

SPACE(INDEX) := E;

end PUSH;

procedure POP(E : out ELEM) is

begin

if INDEX = 0 then
raise UNDERFLOW;

end if:

E SPACE(INDEX);
INDEX := INDEX - 1;

end POP;

end STACK;

Instances of this generic package can be obtained as follows:

package STACKJNT is new STACK(SIZE => 200, ELEM => INTEGER);
package STACK_BOOL is new STACK! 100, BOOLEAN);

Thereafter, the procedures of the instantiated packages can be called as follows:

STACKJNT. PUSH(N);
STACK_B OOL.PUSH (TRUE);

12 12

Generic Program Units
MIL-STD-1815
10 December 1980

Alternatively, a generic formulation of the type STACK can be given as follows (package body

omitted):

generic

type ELEM is private;

package ON_STACKS is

type STACKISIZE : NATURAL) is limited private;

procedure PUSH (S : in out STACK; E : in ELEM);

procedure POP (S : in out STACK; E : out ELEM);

OVERFLOW, UNDERFLOW : exception

private

type STACKISIZE : NATURAL) is

record

SPACE : array! 1 .. SIZE) of ELEM;
INDEX : INTEGER range 0 .. INTEGER'LAST := 0;

end record;

end;

In order to use such a package an instantiation must be created and thereafter stacks of the cor-

responding type can be declared:

ciocisr©

package STACK_INT is new ON_STACKS(INTEGER); use STACK_INT;

S : STACK(IOO);
begin

PUSH(S, 20);

end;

12 13

MIL-STD-1815
10 December 1980

1 3. Representation Specifications and Implementation Dependent Features

13.1 Representation Specifications

Representation specifications specify how the types of the language are to be mapped onto the

underlying machine. Mappings acceptable to an implementation do not alter the net effect of a

program. They can be provided to give more efficient representation or to interface with features

that are outside the domain of the language (for example, peripheral hardware).

representation_specification ::=

length_specification I

enumeration_type_representation

|

record_type_representation
|

address_specification

Representation specifications may appear in a declarative part, after the list of declarative items,

and can only apply to items declared in the same declarative part. A representation specification

given for a type applies to all objects of the type. For a given type, more than one representation

specification can be given if and only if they specify different aspects of the representation. Thus

for an enumeration type, both a length specification and an enumeration type representation can

be given (but of course, at most one of each kind).

Representation specifications may also appear in package specifications and task specifications. A
representation specification given in the private part of a package specification may only apply to

an item declared in either the visible part or the private part of the package. A representation

specification given in a task specification may only apply to an entry of the task (type) or to the task

(type) itself.

In the absence of explicit representation specifications for a particular item, its representation is

determined by the compiler.

The representation specifications in a declarative part, package specification, or task specification

are elaborated in the order in which they appear. The effect of the elaboration of a representation

specification is to define the corresponding representation and any consequent representation

attribute (see 1 3.7). Any reference to such an attribute assumes that the choice of a representa-

* tion has already been made, either explicitly by a specification, or by default by the compiler.

Consequently a representation specification for a given entity must not appear after an occurrence

of a representation attribute of this entity, nor may the specification mention such an attribute.

No representation specification may be given for a type derived from an access type. The only

allowable representation specification for a type (other than an access type) that has derived user

defined subprograms from its parent type is a length specification.

13 - 1

MIL-STD-1815
10 December 1980 Ada Reference Manual

The interpretation of some of the expressions appearing in representation specifications may be
implementation dependent, for example, expressions specifying addresses. An implementation
may limit representation specifications to those that can be handled simply by the underlying
hardware. For each implementation, the corresponding implementation dependences must be
documented in Appendix F of the reference manual.

Whereas representation specifications are used to specify a mapping completely, pragmas can be
used to provide criteria for choosing a mapping. The pragma PACK specifies that storage
minimization should be the main criterion when selecting the representation of a record or array
type. Its form is as follows:

pragma PACK(type_name);

Packing means that gaps between the storage areas allocated to consecutive components should
be minimized. It does not, however, affect the mapping of each component onto storage. This
mapping can only be influenced (or controlled) by a pragma (or representation specification) for the
component or component type. The position of a PACK pragma is governed by the same rules as
for a representation specification; in particular, it must appear before any use of a representation
attribute of the packed entity.

Additional representation pragmas may be provided by an implementation; these must be
documented in Appendix F.

References'.

access type 3.8, array type 3.6, declarative item 3.9, declarative part 3.9, derived type 3.4, elaboration 3.1

,

entry 9.5, enumeration type 3.5.1 , expression 4.4, object 3.2, package 7, package specification 7.1, parent
type 3.4, pragma 2.8, private part 7.2, record type 3.7, subprogram 6, task specification 9.1 , type 3, visible
part 7.2

1 3.2 Length Specifications

A length specification controls the amount of storage associated with an entity.

length_specification ::= for attribute use expression;

The expression must be of some numeric type; it is evaluated during the elaboration of the length
specification, unless it is a static expression. The effect of the length specification depends on the
attribute given. This must be an attribute of a type (task types included), or of a task, denoted here
by T:

(a) Size specification: T'SIZE

The type T can be any type, other than a task type. The expression must be a static expression
of some integer type; its value specifies the maximum number of bits to be allocated to
objects of the type T. This number must be at least equal to the minimum number needed for
the representation of objects of this type.

13 - 2

Representation Specifications and Implementation Dependent Features

MIL-STD-1815
10 December 1980

A size specification for a composite type may affect the size of the gaps between the storage

areas allocated to consecutive components. On the other hand, it does not affect the size of

the storage area allocated to each component.

Size specifications are not allowed for types whose constraints are not static.

(b) Specification of collection size: T'STORAGE_SIZE

The type T must be an access type. The expression must be of some integer type (but need

not be static); its value specifies the number of storage units to be reserved for the collection,

that is, the storage space needed to contain all objects designated by values of the access

type.

ft

(c) Specification of task storage: T’STORAGE_SIZE

The name T must be the name of a task type or task, introduced by a task specification. The

expression must be of some integer type (but need not be static); its value specifies the

number of storage units to be reserved for an activation of a task of the type (or for the single

task). This length specification has, of course, no effect on the size of the storage occupied by

the code of the task type.

(d) Specification of an actual delta: T'ACTUAI DELTA

The type T must be a fixed point type. The expression must be a literal expression expressing

a real value. This value specified as actual delta must not be greater than the delta of the

type. The effect of the length specification is to use this value of actual delta for the represen-

tation of values of the fixed point type.

The exception STORAGE_ERROR may be raised by an allocator, or by the execution of a task, if

the space reserved is exceeded.

Examples:

assumed declarations

type MEDIUM is range 0 .. 65000;
type SHORT is delta 0.01 range -100.0 .. 100.0;

* type DEGREE is delta 0.1 range -360.0 .. 360.0;

BYTE : constant := 8;

PAGE : constant := 2000;

length specifications

for COLOR'SIZE us® 1 *BYTE;
for MEDIUM'SIZE use 2* BYTE;
for SHORT'SIZE use 15;

for CAR_NAME'STORAGE_SIZE use -- approximately 2000 cars

2000*((CAR'SIZE/SYSTEM.ST0RAGE_UNIT) + 1);

for KEYBOARD_DRIVER'STORAGE_SIZE use 1 *PAGE;

for DEGREE ACTUALDELTA use 360.0/2**(SYSTEM.ST0RAGE_UNIT - 2);

13-3

MIL-STD-1815

10 December 1980
Ada Reference Manual

Notes:

In the length specification for SHORT, fifteen bits is the minimum necessary since the type defini-
tion requires at least 20001 model numbers (((2*100)*100) + 1).

Objects allocated in a collection need not occupy the same amount of storage if they are records
with variants or dynamic arrays. Note also that the allocator itself may require some space for
internal tables and links. Hence a length specification for the collection of an access type does not
always give precise control over the maximum number of allocated objects.

The method of allocation for objects denoted by an access type or for tasks is not defined by a
length specification. For example, the space allocated could be on a stack; alternatively, a qeneral
allocator or fixed storage could be used.

References :

access type 3.8, actual delta 3.5.9, allocator 4.8, collection 3.8, delta 3.5.9, composite type 3 7 dynamic
array 3.6.1, elaboration 3.1, expression 4.4, fixed point type 3.5.9, integer type 3.5.4, literal expression
4.10, object 3.2, real value 3.5.6, record 3.7, static expression 4.9, storage_error exception 1 1 1 ta=k 9
task type 9, type 3, variant 3.7.1

13.3 Enumeration Type Representations

An enumeration type representation specifies the internal codes for the literals of an enumeration

enumeration_type_representation ::= for type_name use aggregate;

The aggregate used to specify this mapping is an array aggregate of type

array (type_name) of universal integer

All enumeration literals must be provided with distinct integer codes, and the aggregate must be a

relabon

X

of

e

thTtypI
'nte9er C°deS Spedfied f° r the enu™ration type must satisfy the ordering

Example:

type MIX_CODE is (ADD. SUB, MUL,

for MIX_CODE use
(ADD => 1, SUB => 2, MUL =>

LDA, STA, STZ);

3, LDA => 8, STA => 24, STZ => 33);

Notes:

The attributes SUCC, PRED, and POS are defined even for enumeration types with a non-

affert
9
ed°h!

";
presenta *,on; their definition corresponds to the (logical) type declaration and is not

nmdtld ^
he ®" u,

!
ierat

.

lon ^Pe representation. In the example, because of the need to avoid theomitted values, the functions are less efficiently implemented than they could be in the absence ofrepresentation specification. Similar considerations apply when such types are used for indexing

13 - 4

Representation Specifications and Implementation Dependent Features
MIL-STD-1815

10 December 1980

References’.

aggregate 4.3, enumeration literal 3.5.1, enumeration type 3.5.1, function 6, index 3.6, static expression

4.9, type 3, type declaration 3.1

- 13.4 Record Type Representations

A record type representation specifies the storage representation of records, that is, the order,

n position, and size of record components (including discriminants, if any). Any expression contained

in a record type representation must be a static expression of some integer type.

record_type_representation ::=

for type name use

record [alignment_clause;]

\componentjname location;)

end record;

location ::= at sfaf/c_simple_expression range range

alignment_clause ::= at mod sfaf/c_simple_expression

The position of a component is specified as a location relative to the start of the record. The integer

defined by the static expression of the at clause of a location is a relative address expressed in

storage units. The range defines the bit positions of the component, relative to the storage unit.

The first storage unit of a record is numbered 0. The first bit of a storage unit is numbered 0. The

ordering of bits in a storage unit is machine dependent and may extend to adjacent storage units.

For a specific machine, the size in bits of a storage unit is given by the configuration dependent

constant SYSTEM.STORAGE_UNIT.

Locations may be specified for some or for all components of a record, including discriminants. If

no location is specified for a component, freedom is left to the compiler to define the location of

the component. If locations are specified for all components, the record type representation com-

pletely specifies the representation of the record type and must be obeyed exactly. Locations

within a record variant must not overlap, but the storage for distinct variants may overlap. Each

- location must allow for enough storage space to accommodate every allowable value of the com-

ponent. Locations can only be specified for components whose constraints are static.

An alignment clause forces each record of the given type to be allocated at a starting address

which is a multiple of the value of the given expression (that is, the address modulo the expression

must be zero). An implementation may place restrictions on the allowable alignments. Compo-

nents may overlap storage boundaries, but an implementation may place restrictions on how com-

ponents may overlap storage boundaries.

An implementation may generate names that denote certain system dependent components (for

example, one containing the offset of another component that is a dynamic array). Such names

can be used in record type representations. The conventions to be followed for such names must

be documented in Appendix F.

13 - 5

MIL-STD-1815

10 December 1980 Ada Reference Manual

Example :

WORD : constant := 4; -- storage unit is byte, 4 bytes per word

type STATE is (A, M, W, P);

type MODE is (FIX, DEC, EXP, SIGNIF);

type PROGRAM_STATUS_WORD is

record

SYSTEM_MASK
PROTECTION_KEY
MACHINE_STATE
INTERRUPT_CAUSE
ILC

CC
PROGRAM_MASK
INST_ADDRESS

end record;

array(0 .. 7) of BOOLEAN;
INTEGER range 0 .. 3;

array(STATE) of BOOLEAN;
INTERRUPTION_CODE;
INTEGER range 0 .. 3;

INTEGER range 0 .. 3;

array(MODE) of BOOLEAN;
ADDRESS;

for PROGRAM_STATUS_WORD use

record at mod 8;

SYSTEM_MASK at 0*W0RD range 0 .. 7;

PROTECTION_KEY at 0*WORD range 10 .. 11;

MACH INE_STATE at 0*WORD range 12 .. 15;

INTERRUPT_CAUSE at 0*W0RD range 16 .. 31;

ILC at 1 *WORD range 0 .. 1;

CC at 1 *WORD range 2 .. 3;

PROGRAMJVIASK at 1 *WORD range 4 .. 7;

INST_ADDRESS at 1 *WORD range 8 .. 31;

end record;

bits 8, 9 unused

second word

for PROGRAM_STATUS_WORD'SIZE use 8*SYSTEM.STORAGE_UNIT;

Note on the example :

The record type representation defines the record layout; the length specification guarantees that

exactly eight storage units are used.

References-.

component 3.7, constraint 3.3, discriminant 3.7.1 , expression 4.4, integer type 3.5.4, name 4.1 ,
range 3.5,

record component 3.7, record type 3.7, static expression 4.9, type 3, value 3.7.1, variant 3.7.1 3.7.3

1 3.5 Address Specifications

An address specification defines the location of an object in storage or the starting address of a

program unit. An address specification given for an entry links the entry to a hardware interrupt.

address_specification ::= for name use at sfaf/c_simple_expression;

The static expression given after the reserved word at must be of some integer type. The conven-
tions that define the interpretation of this integer value as an address, as an interrupt level, or

whatever it may be, are implementation dependent. They must be documented in Appendix F.

13 - 6

Representation Specifications and Implementation Dependent Features
MIL-STD-1815

10 December 1980

The name must be one of the following:

(a) Name of an object: the address is the address assigned to the object (variable or constant).

(b) Name of a subprogram, package, or task: the address is that of the machine code associated

with the body of the program unit.

(c) Name of an entry: the address specifies a hardware interrupt to which the entry is linked. This

form of address specification cannot be used for an entry of a family.

Address specifications should not be used to achieve overlays of objects or overlays of program

units. Nor should a given interrupt be linked to more than one entry. Any program using address

specifications to that effect is erroneous.

O
Example:

for CONTROL use at 1 6#0020#;

Notes:

For address specifications an implementation may allow static expressions containing terms that

are only known when linking the program. Such terms may be written as representation attributes.

An implementation may provide pragmas for the specification of program overlays.

References:

constant 3.2, entry 9.5, family of entries 9.5, integer type 3.5.4, name 4.1, object 3.2, package 7, pragma

2.8, program unit 7, static expression 4.9, subprogram 6, task 9, value 3.3, variable 3.2 4.1

13.5.1 Interrupts

An address specification given for an entry associates the entry with an interrupt; such an entry is

referred to in this section as an interrupt entry. If control information is supplied by an interrupt, it

is passed to an associated interrupt entry as one or more in parameters.

9

The occurrence of an interrupt acts as an entry call issued by a task whose priority is higher than

that of any user-defined task. The entry call may be an ordinary entry call, a timed entry call, or a

conditional entry call, depending on the type of interrupt and on the implementation.
9
HI

Example :

task INTERRUPTSAN DLER is

entry DONE;
for DONE use at 16#40#;

end;

13 7

MIL-STD-1815
10 December 1980

Ada Reference Manual

Notes

:

Interrupt entry calls need only have the semantics described above; they may be implemented by
having the hardware directly execute the appropriate accept statements.

Queued interrupts correspond to ordinary entry calls. Interrupts that are lost if not immediately
processed correspond to conditional entry calls. It is a consequence of the priority rules that an
accept statement executed in response to an interrupt takes precedence over ordinary, user-

defined tasks, and can be executed without first invoking a scheduling action.

One of the possible effects of an address specification for an interrupt entry is to specify the

priority of the interrupt (directly or indirectly). Direct calls to an interrupt entry are allowed.

References'.

accept statement 9.5, alternative 9.7.1, conditional entry call 9.7.2, entry 9.5, in parameter 6.2, select

statement 9.7, task 9

13.6 Change of Representation

Only one representation can be defined for a given type. If therefore an alternative representation
is desired, it is necessary to declare a second type derived from the first and to specify a different

representation for the second type.

Example:

PACKED_DESCRIPTOR and DESCRIPTOR are two different types
-- with identical characteristics, apart from their representation

type DESCRIPTOR is

record

components of a descriptor

end;

type PACKED_DESCRIPTOR is new DESCRIPTOR;

for PACKED_DESCRIPTOR use
record

locations of all components
end record;

Change of representation can now be accomplished by assignment with explicit type conversions:

D : DESCRIPTOR;
P : PACKED_DESCRIPTOR;

P := PACKED_DESCRIPTOR(D); - pack D
D := DESCRIPTOR(P); - unpack P

References:

assignment 5.2, derived type 3.4, type 3, type conversion 4.6

13 - 8

Representation Specifications and Implementation Dependent Features
MIL-STD-1815
10 December 1980

13.7 Configuration and Machine Dependent Constants

O

For a given implementation the package SYSTEM (declared in STANDARD) will contain the defini-

tions of certain constants designating configuration dependent characteristics. The exact defini-

tion of the package SYSTEM is implementation dependent and must be given in Appendix F. The
specification of this package must contain at least the following declarations.

package SYSTEM is

type SYSTEM_NAME is — implementation defined enumeration type

NAME : constant SYSTEM_NAME := — the name of the system

STORAGE_UNIT : constant

MEMORY_SIZE : constant

MIN_INT : constant

MAXUNT : constant

end SYSTEM;

the number of bits per storage unit

the number of available storage units in memory
the smallest integer value supported by a predefined type

the largest integer value supported by a predefined type

The corresponding characteristics of the configuration can be specified in the program by supply-
ing appropriate pragmas:

pragma SYSTEM(name); — to establish the name of the object machine
pragma STORAGE_UNIT(number); -- to establish the number of bits per storage unit

pragma M EMORY_SIZE(number); — to establish the required number of storage units

The values corresponding to other implementation dependent characteristics of specific program
constructs, including the characteristics established by representation specifications, can be
obtained by the use of appropriate representation attributes . These include the attributes

ADDRESS, SIZE, POSITION, FIRST_BIT, LAST_BIT, and so on. The list of language defined
attributes is given in Appendix A.

An implementation may provide additional pragmas that influence representation, and it may also
provide corresponding representation attributes. These implementation specific pragmas and
attributes must be documented in Appendix F.

Examples’.

INTEGER'SIZE — number of bits actually used for implementing INTEGER
TABLE'ADDRESS - address of TABLE

X.COM PON ENT' POSITION
X.COMPONENT'FIRST.BIT
X.COM PO N E NT' LAST_B IT

References'.

position of COMPONENT in storage units

first bit of bit range

last bit of bit range

attribute A, constant 3.2, declaration 3.1, package 7, package specification 7.2, pragma 2.8

13 - 9

MIL-STD-1815

10 December 1980 Ada Reference Manual

13.7.1 Representation Attributes of Real Types

For every floating point type or subtype F, the following machine dependent attributes are defined

which are not related to the model numbers. Programs using these attributes may thereby exploit

properties that go beyond the minimal properties associated with the numeric type. Precautions
must consequently be taken when using these machine dependent attributes if portability is to be
ensured.

F'MACHINE_ROUNDS

F'MACHINE_RADIX

F'MACHINE_MANTISSA

F'MACHINE_EMAX

F'MACHINE_EMIN

F'MACH I N E_0VERFLOWS

True if and only if all machine operations using type F perform

rounding. Of type BOOLEAN.

The machine radix of numerical representation. Of type univer-

saljnteger.

The number of machine radix places in the mantissa. Of type

universaljnteger.

The maximum exponent of numerical representation (to the

base of the radix). Of type universal integer.

The smallest exponent of numerical representation. Of type

universalJnteger.

True if and only if the exception NUMERIC_ERROR is raised for

computations which exceed the range of real arithmetic. Of
type BOOLEAN.

For every fixed point type or subtype F, the following machine dependent attribute is defined.

F'MACHINE_ROUNDS True if and only if all machine operations using type F perform

rounding. Of type BOOLEAN.

Note:

The largest machine representable number is almost

(F'MACHINE_RADIX)**(F'MACHINE_EMAX),

and the smallest is

F'MACHINE_RADIX ** (F'MACHINE_EMIN - 1)

References'.

accuracy of operations with real operands 4.5.8, boolean type 3.5.3, exponent 3.5.7, fixed point type 3.5.9,

floating point type 3.5.7, mantissa 3.5.7, model number 3.5.7, numeric_error exception 11.1, universal

integer type 2.4 3.2

13 - 10

Representation Specifications and Implementation Dependent Features MIL-STD-1815
10 December 1980

13.8 Machine Code Insertions

A machine code insertion can be achieved by a call to an inline procedure whose sequence of

statements contains only code statements. Only use clauses and pragmas may appear in the

declarative part of such a procedure. No exception handler may appear in such a procedure.

code_statement ::= qualified_expression;

Each machine instruction appears as a record aggregate of a record type that defines the cor-

responding instruction. Declarations of such record types will generally be available in a

predefined package for each machine. A procedure that contains a code statement must contain

only code statements.

An implementation may provide machine dependent pragmas specifying register conventions and
calling conventions. Such pragmas must be documented in Appendix F.

Example :

M : MASK;
procedure SET_MASK; pragma INLINE(SET_MASK);

procedure SET_MASK is

use INSTRUCTION_360;
begin

SI_FORMAT'(CODE => SSM, B => M'BASE, D => M'DISP);

M'BASE and M'DISP are implementation specific predefined attributes

end;

References :

declarative part 3.9, exception handler 11.2, inline pragma 6.3, inline procedure 6.3, package 7, pragma
2.8, procedure 6, qualified expression 4.7, record aggregate 4.3.1, record type definition 3.7, statement

5.1 ,
use clause 8.4

13.9 interface to Other Languages

A subprogram written in another language can be called from an Ada program provided that all

communication is achieved via parameters and function results. A pragma of the form

pragma INTERFACE (languagejname, subprogram_name);

must be given for each such subprogram (a subprogram name may stand for several overloaded

subprograms). This pragma must appear after the subprogram specification, either in the same
declarative part or in the same package specification. The pragma specifies the calling conventions

and informs the compiler that an object module will be supplied for the corresponding subprogram.
Neither a body nor a body stub may be given for such a subprogram.

This capability need not be provided by all compilers. An implementation may place restrictions on
the allowable forms and places of parameters and calls.

13 - 11

MIL-STD-1815
10 December 1980 Ada Reference Manual

Example :

package FORT_LIB is

function SQRT (X : FLOAT) return FLOAT;
function EXP (X : FLOAT) return FLOAT;

private

pragma I NTERFACF.f FORTRAN, SQRT);
pragma INTER FACE(F0RTRAN, EXP);

end F0RT_LIB;

Note :

The conventions used by other language processors that call Ada programs are not part of the Ada
language definition. These conventions must be defined by these other language processors.

References :

body 6.3 7.3, body stub 10.2, declarative part 3.9, package specification 7.2, parameter 6.1, pragma 2.8,
subprogram 6, subprogram specification 6.1

13.10 Unchecked Programming

The predefined generic library subprograms UNCHECKED_DEALLOCATION and UNCHECKED_-
CONVERSION are used for unchecked storage deallocation and for unchecked type conversions.

generic

type OBJECT is limited private;

type NAME is access OBJECT;
procedure UNCHECKED_DEALLOCATION(X : in out NAME);

generic

type SOURCE is limited private;

type TARGET is limited private;

function UNCHECKED_CONVERSION(S : SOURCE) return TARGET;

13.10.1 Unchecked Storage Deallocation

Unchecked storage deallocation of an object designated by a value of an access type is achieved
by a call of a procedure obtained by instantiation of the generic procedure UNCHECKED_DEAL-
LOCATION. For example.

procedure FREE is new UNCHECKED_DEALL0CATI0N(o6y'ecf_rype_name, access type name)',

13 - 12

Representation Specifications and Implementation Dependent Features

MIL-STD-1815

10 December 1980

Such a FREE procedure has the following effect:

(a) after executing FREE(X), the value of X is null

(b) FREE(X), when X is already equal to null, has no effect

(c) FREE(X), when X is not equal to null, is an indication that the object denoted by X is no longer
required, and that the storage it occupies is to be reclaimed.

If two access variables X and Y designate the same object, then any reference to this object using
Y is erroneous after the call FREE(X); the effect of a program containing such a reference is

unpredictable.

It is a consequence of the visibility rules of the language that any compilation unit using unchecked
storage deallocations must include UNCHECKED_DEALLOCATION in one of its with clauses.

References'.

access type 3.8, generic function 12.1, generic instantiation 12.3, library unit 10.1, type 3.3, visibility rules
8, with clause 10.1.1

13.10.2 Unchecked Type Conversions

Unchecked type conversions can be achieved by instantiating the generic function UNCHECKED_-
CONVERSION.

The effect of an unchecked conversion is to return the (uninterpreted) parameter value as a value
of the target type, that is, the bit pattern defining the source value is returned unchanged as the bit
pattern defining a value of the target type. An implementation may place restrictions on unchecked
conversions, for example restrictions depending on the respective sizes of objects of the source
and target type.

Whenever unchecked conversions are used, it is the programmer's responsibility to ensure that
these conversions maintain the properties to be expected from objects of the target type.
Programs that violate these properties by means of unchecked conversions are erroneous.

It is a consequence of the visibility rules of the language that any compilation unit using unchecked
conversions must include UNCHECKED_CONVERSION in one of its with clauses.

References'.

constraint 3.3, constraint_error exception 11.1, generic procedure 12.1, generic instantiation 12.3, library
unit 10.1, type 3.3, type conversion 4.6, visibility rules 8, with clause 10.1.1

13 - 13

*1

MIL-STD-1815

10 December 1980

14. Input-Output

Input-output facilities are predefined in the language by means of two packages. The generic
package INPUT_OUTPUT defines a set of input-output primitives applicable to files containing ele-

ments of a single type. Additional primitives for text input-output are supplied in the package TEX-
T_IO. These facilities are described here, together with the conventions to be used for dealing with
low level input-output operations.

References :

generic package 12.1, input-output package 14.2, package 7, type 3

14.1 General User Level Input-Output

The high level input-output facilities are defined in the language. A suitable package is described
here and is given explicitly in section 14.2; it defines file types and the procedures and functions
that operate on files.

Files are declared, and subsequently associated with appropriate sources and destinations (called

external files) such as peripheral devices or data sets. Distinct file types are defined to provide
either read-only access, write-only access or read-and-write access to external files. The cor-
responding file types are called IN_FILE, OUT_FILE, and INOUT_FILE.

External files are named by a character string, which is interpreted by individual implementations
to distinguish peripherals, access rights, physical organization, and so on.

The package defining these facilities is generic and is called INPUT_OUTPUT. Any program which
requires these facilities must instantiate the package for the appropriate element type.

A file can be read or written, and it can be set to a required position; the current position for

access and the number of elements in the file may be obtained.

When the term file is used in this chapter, it refers to a declared object of a file type; the term
external file is used otherwise. Whenever there is a possible ambiguity, the term internal file is

used to denote a declared file object.

References :

character string 2.6, declaration 3.1, function 6.1, generic instantiation 12.3, generic package 12.1,
package 7, procedure 6, type 3

14 - 1

MIL-STD-1815

10 December 1980
Ada Reference Manual

14.1.1 Files

A file is associated with an unbounded sequence of elements, all of the same type. With each ele-

ment of the file is associated a positive integer number that is its (ordinal) position number in this

sequence. Some of the elements may be undefined, in which case they cannot be read.

The file types for a given element type, and the appropriate subprograms for dealing with it, are

produced by instantiating a generic package. For example:

package INT_IO is new INPUT_OUTPUT(ELEMENT_TYPE => INTEGER);

establishes types and procedures for files of integers, so that

RESULTS_FILE : INT_IO.OUT_FILE;

declares RESULTS_FILE as a write-only file of integers.

Before any file processing can be carried out, the internal file must first be associated with an
external file. When such an association is in effect, the file is said to be open. This operation is

performed by one of the CREATE or OPEN procedures which operate on a file and a character str-

ing used to name an external file:

procedure CREATE(FILE : in out OUT_FILE; NAME : in STRING);

procedure CREATE(FILE : in out INOUT.FILE; NAME : in STRING);

Establishes a new external file with the given name and associates with it the given

file. A new external file established by a CREATE operation corresponds to a sequence
of elements all of which are initially undefined. If the given internal file is already

open, the exception STATUS_ERROR is raised. If creation is prohibited for the exter-

nal file (for example, because an external file with that name already exists), the

exception NAME_ERROR is raised.

procedure OPEN(FILE : m out IN FI LE; NAME : in STRING);
procedure OPEN(FILE ; in out OUT_FILE; NAME : in STRING);

procedure OPEN(FILE : in out INOUT-FILE; NAME : in STRING);

Associates the given internal file with an existing external file having the given name.
If the given internal file is already open, the exception STATUS_ERROR is raised. If

no such external file exists, or if this access is prohibited, the exception NAME_ER-
ROR is raised.

After processing has been completed on a file, the association may be severed by the CLOSE
procedure:

procedure CLOSE(FILE : in out IN FILE);

procedure CLOSE(FILE : an out OUT_FILE);

procedure CLOSE(FILE ; on out INOUT_FILE);

Severs the association between the internal file and its associated external file. The
exception STATUS-ERROR is raised if the internal file is not open.

14 - 2

Input-Output

MIL-STD-1815

10 December 1980

The functions IS_OPEN and NAME take a file as argument:

function IS_OPEN(FILE : in IN_FILE) return BOOLEAN;
function IS_OPEN(FILE : in OUT_FILE) return BOOLEAN;
function IS_OPEN(FILE : in INOUT_FILE) return BOOLEAN;

Returns TRUE if the internal file is associated with an external file, FALSE otherwise.

function NAME(FILE : in IN.FILE) return STRING;
function NAMEIFILE : in OUT_FILE) return STRING;
function NAMEIFILE : in INOUT_FILE) return STRING;

Returns a string representing the name of the external file currently associated with

the given internal file. If there is no external file currently associated, the exception

STATUS_ERROR is raised. The string returned is implementation dependent, but

must be sufficient to identify uniquely the corresponding external file if used subse-

quently, for example, in an OPEN operation.

The following procedure operates on external files:

procedure DELETEINAME : in STRING);

Deletes the named external file; no OPEN operation can thereafter be performed on
the external file, and the external file can cease to exist as soon as it is no longer

associated with any internal file. Raises the NAME_ERROR exception if no such
external file exists, or if this operation is otherwise prohibited.

Example: create a new external file on backing store:

CREATE! FILE => RESULTS_FILE, NAME => "<ADA>COUNTS.1 ;P77000");
write the file

CLOSE(RESULTS_FILE);

Example: read a paper tape:

declare

package CHARJO is new INPUT_OUTPUT(CHARACTER);
PT : CHAR_IO.IN_FILE;

begin

CHAR_IO.OPEN(PT, "ttyg");

— input the data from device ttyg

CHARJO.CLOSE(PT);
end;

References:

exception 11, false 3.5.3, function 6, generic parameter 12.1, name 4.1, package declaration 7.1,

procedure 6, raise an exception 11.3, string 3.6.3, true 3.5.3, type 3

14 - 3

MIL-STD-1815

10 December 1980 Ada Reference Manual

14.1.2 File Processing

An open IN_FILE or INOUT_FILE can be read; an open 0UT_FILE or INOUT_FILE can be written.

A file that can be read has a current read position, which is the position number of the element
available to the next read operation. A file that can be written has a current write position, which
is the position number of the element available to be modified by the next write operation. The
current read or write positions can be changed. Positions in a file are expressed in the implementa-

tion defined integer type FILEJNDEX.

A file has a current size, which is the number of defined elements in the file, and an end position,

which is the position number of the last defined element if any, and is otherwise zero.

When a file is opened or created, the current write position is set to 1 , and the current read posi-

tion is set to the position number of the first defined element, or to 1 if no element is defined.

The operations available for file processing are described below; they apply only to open files. The
exception STATUS_ERROR is raised if one of these operations is applied to a file that is not open.
The exception DEVICE_ERROR is raised if an input-output operation cannot be completed
because of a malfunction of the underlying system. The exception USE_ERROR is raised if an
operation is incompatible with the properties of the external file.

procedure READ(FILE : in IN_FILE; ITEM : out ELEMENT_TYPE);
procedure READfFILE : in INOUT.FILE; ITEM : out ELEMENT_TYPE);

Returns, in the ITEM parameter, the value of the element at the current read position

of the given file. Advances the current read position to the next defined element in the

sequence, if any, and otherwise increments it by one. The exception DATA_ERROR is

raised if the value is not defined and may (but need not) be raised if it is not of the

required element type. The exception END_ERROR is raised if the current read posi-

tion is higher than the end position. Any previous WRITE on the same external file

must have been completed before this READ. Note that READ is not defined for an

OUT_FILE.

procedure WRITE(FILE : in OUT_FILE; ITEM : in ELEMENT_TYPE);
procedure WRITE(FILE : in INOUT_FILE; ITEM : in ELEMENT.TYPE);

Gives the specified value to the element in the current write position of the given file,

and adds 1 to the current write position. Adds 1 to the current size if the element in

the current write position was not defined, and sets the end position to the written

position if the written position exceeds the end position. Note that WRITE is not

defined for an I N FI LE.

function NEXT_READ(FILE : in IN FI LE) return FILE_INDEX;
function NEXT_READ(FILE : in INOUT_FILE) return FILE_INDEX;

Returns the current read position of the given file.

procedure SET_READ(FILE : in IN_FI LE; TO : in FILEJNDEX);
procedure SET_READ(FILE : in INOUT_FILE; TO : in FILEJNDEX);

Sets the current read position of the given file to the specified index value. (The

specified value may exceed the end position).

14 - 4

Input-Output
MIL-STD-1815

10 December 1980

procedure RESET_READ(FILE : in IN.FILE);

procedure RESET_READ(FILE : in INOUT.FILE);

Sets the current read position of the given file to the position number of the first

defined element, or to 1 if no element is defined.

function NEXT_WRITE(FILE : in OUT.FILE) return FILEJNDEX;
function NEXT_WRITE(FILE : in INOUT_FILE) return FILE_INDEX;

Returns the current write position of the given file.

procedure SET_WRITE(FILE : in OUT_FILE; TO : in FILEJNDEX);
procedure SET_WRITE(FILE : in INOUT.FILE; TO : in FILEJNDEX);

Sets the current write position of the given file to the value specified by TO. (The
specified value may exceed the end position).

procedure RESET_WRITE(FILE : in OUT_FILE);
procedure RESET_WRITE(FILE : in INOUT_FILE);

Sets the current write position of the given file to 1.

function SIZEfFILE : in IN FI LE) return FILEJNDEX
function SIZE(FILE : in OUT_FILE) return FILEJNDEX
function SIZE(FILE : in INOUT_FILE) return FILEJNDEX

Returns the current size of the file.

function LAST(FILE : in IN FILE) return FILEJNDEX
function LAST(FILE : in OUT_FILE) return FILEJNDEX
function LAST(FILE : in INOUT_FILE) return FILEJNDEX

Returns the end position of the file.

function END_OF_FILE(FILE : in IN_FILE) return BOOLEAN;
function END_OF_FILE(FILE : in INOUT_FILE) return BOOLEAN;

Returns TRUE if the current read position of the given file exceeds the end position,
otherwise FALSE.

procedure TRUNCATE(FILE: in OUT_FILE; TO: in FILEJNDEX);
procedure TRUNCATE(FILE: in INOUT_FILE; TO: in FILEJNDEX);

Sets the end position of the given file to the specified index value, if it is not larger
than the current end position, and changes the current size accordingly. Any element
after the given position becomes undefined. Raises the USE_ERROR exception if the
specified index value exceeds the current end position.

14 - 5

MIL-STD-1815

10 December 1980 Ada Reference Manual

The predefined package does not restrict the physical representation of an external file, providing
only that this representation implements a sequence of elements, indexed by position. An external

file can thus be a collection of records stored on disks, tapes or other media, or a keyboard, a ter-

minal, a line-printer, a communication link or other device. The interpretation of the character str-

ing used to name an external file depends on the implementation: this external file name can be
used to specify devices, system addresses, file organization, access rights and so on.

A file may be implemented using various access methods. In a sequential organization, all the ele-

ments up to the size of the file are always defined (although their value may be arbitrary), and a

successful READ operation will always increment the current read position by 1. In an indexed
organization however, the only defined elements are those whose position numbers are given by
existing key values.

Certain accesses to particular external files may be prohibited; attempts at such accesses will

raise the exception USE_ERROR. Examples are the attempt to backspace on a paper tape, to

write a protected file, to extend a file whose size is fixed, to manipulate the current read to write
position on a communication link, or to ask for the SIZE or the LAST of an interactive device.

Example of file processing :

— Accumulate the values of a sequential external file and append the total

declare

use INTJO;
COUNTS : INOUT_FILE;
VALUE : INTEGER;
TOTAL : INTEGER := 0;

begin

OPEN(COUNTS, ">udd>ada>counts");
while not END_OF_FILE(COUNTS) loop

READ(COUNTS, VALUE);
TOTAL := TOTAL + VALUE;

end loop;

SET_WRITE(COUNTS, LAST(COUNTS) + 1);

WRITE(COUNTS, TOTAL);
CLOSE(COUNTS);

end;

Example of file positioning :

RESET_READ(COUNTS); — could mean rewind
SET_WRITE(RESULTS_FILE, NEXT_WR ITE(RESU LTS_FI LE) - 1); - backspace
SET_WRITE(RESULTS_FILE, LAST(RESULTS_FILE) + 1); - advance to end of file

References-.

character string 2.6, false 3.5.3, name 4.1, out parameter 6.2, package 7, record 3.7, true 3.5.3, type 3

14 - 6

Input-Output
MIL-STD-1815

10 December 1980

14.2 Specification of the Package lnput_Output

The specification of the generic package INPUT_OUTPUT is given below. It provides the calling

conventions for the operations described in section 14.1.

generic

type ELEMENT_TYPE is limited private;

package INPUT_OUTPUT is

type IN_FILE is limited private;

type OUT_FILE is limited private;

type INOUT_FILE is limited private;

type FILE..INDEX is range 0 .. implementation defined ;

general operations for file manipulation

procedure CREATE (FILE : in out OUT_FILE NAME : in STRING);
procedure CREATE (FILE ; in out INOUT_FILE; NAME : in STRING);

procedure OPEN (FILE in out IN_FILE; NAME : in STRING):
procedure OPEN (FILE in out OUT_FILE, NAME : in STRING):
procedure OPEN (FILE in out INOUT.FILE; NAME : in STRING):

procedure CLOSE (FILE in out IN_FILE);

procedure CLOSE (FILE in out OUT_FILE) ;

procedure CLOSE (FILE in out INOUT_FILE):

function IS_OPEN (FILE in IN_FILE) return BOOLEAN:
function IS_OPEN (FILE in OUT_FILE) return BOOLEAN;
function IS_OPEN1 (FILE in INOUT_FILE) return BOOLEAN:

function NAME (FILE in IN_FILE) return STRING:
function NAME (FILE in OUT_FILE) return STRING:
function NAME (FILE in INOUT_FILE) return STRING;

procedure DELETE (NAME : n STRING);

function SIZE (FILE in 1 N_FI LE) return FILEJNDEX;
function SIZE (FILE in OUT_FILE) return FILEJNDEX;
function SIZE (FILE in INOUT_FILE) return FILEJNDEX:

function LAST (FILE in IN_FILE) return FILEJNDEX;
function LAST (FILE in OUT_FILE) return FILEJNDEX;
function LAST (FILE in INOUT_FILE) return FILEJNDEX:

procedure TRUNCATEfFILE: in OUT_FILE; TO: in FILEJNDEX):
procedure TRUNCATEfFILE: in INOUT_FILE: TO: in FILE_INDEX):

14 7

MIL-STD-1815

10 December 1980

Ada Reference Manual

-- input and output operations

procedure READ (FILE :: in IN-FILE; ITEM : out ELEMENT-TYPE);
procedure READ (FILE :: in INOUT-FILE; ITEM : out ELEMENT-TYPE);

function NEXT-READ (FILE : in IN-FILE) return FILE-INDEX;
function NEXT-READ (FILE : in INOUT-FILE) return FILE-INDEX;

procedure SET-READ (FILE : in IN-FILE; TO : in FILE-INDEX);
procedure SET-READ (FILE : in INOUT_FILE; TO : in FILE-INDEX);

procedure RESET-READ (FILE : in IN-FILE);

procedure RESET-READ (FILE : in INOUT-FILE);

procedure WRITE (FILE : in OUT-FILE; ITEM ; in ELEMENT-TYPE);
procedure WRITE (FILE : in INOUT-FILE; ITEM : in ELEMENT-TYPE);

function NEXT_WRITE (FILE : in OUT-FILE) return FILE-INDEX;

function NEXT_WRITE (FILE : in INOUT-FILE) return FILE-INDEX;

procedure SET-WRITE (FILE : in OUT-FILE; TO : in FILE-INDEX);

procedure SET-WRITE (FILE : in INOUT-FILE; TO : in FILE-INDEX);

procedure RESET_WRITE (FILE : in OUT-FILE);
procedure RESET_WRITE(FILE : in INOUT-FILE);

function END-OF-FILE (FILE : in IN-FILE) return BOOLEAN;
function END-OF-FILE (FILE : in INOUT-FILE) return BOOLEAN;

exceptions that can be raised

NAME_ERROR
USE_ERROR
STATUS-ERROR
DATA-ERROR
DEVICE-ERROR
END-ERROR

: exception;

: exception;

: exception;

: exception;

: exception;

: exception;

private

declarations of the file private types

end INPUT-OUTPUT;

14.3 Text Input-Output

Facilities are available for input and output in human readable form, with the external file con-

sisting of characters. The package defining these facilities is called TEXT_IO; it is described here

and is given explicitly in section 1 4.4. It uses the general INPUT-OUTPUT package for files of type

CHARACTER, so all the facilities described in section 14.1 are available. In addition to these

general facilities, procedures are provided to GET values of suitable types from external files of

characters, and PUT values to them, carrying out conversions between the internal values and

appropriate character strings.

14 - 8

Input-Output
MIL-STD-1815

10 December 1980

All the GET and PUT procedures have an ITEM parameter, whose type determines the details of

the action and determines the appropriate character string in the external file. Note that the ITEM

parameter is an out parameter for GET and an In parameter for PUT. The general principle is that

the characters in the external file are composed and analyzed as lexical elements, as described in

Chapter 2. The conversions are based on the IMAGE and VALUE attributes described in Appendix

A.

For all GET and PUT procedures, there are forms with and without a file specified. If a file is

specified, it must be of the correct type (IN_FILE for GET, OUT_FILE for PUT). If no file is specified,

a default input file or a default output file is used. At the beginning of program execution, the

default input and output files are the so-called standard input file and standard output file, which

are open and associated with two implementation defined external files.

Although the package TEXT_IO is defined in terms of the package INPUT_OUTPUT, the execution

of an operation of one of these packages need not have a well defined effect on the execution of

subsequent operations of the other package. For example, if the function LAST (of the package

INPUT_OUTPUT) is called immediately before and after a call of the function NEWLINE (of the

package TEXTJO) for a given file and with spacing one, the difference between the two values of

LAST is undefined; it could be any non negative value. The effect of the package TEXTJO is

defined only if the characters written by a PUT operation or read by a GET operation belong to the

95 graphic ASCII characters. The effect of a program that reads or writes any other character is

implementation dependent.

Note:

Text input output is not defined for files of type INOUT_FILE.

References:

character 2.6, character string 2.6, character type 3.5.2, external file 14.1, image attribute A, in parameter

6.1, out parameter 6.1, package 7, procedure 6, type 3, value attribute A

14.3.1 Default Input and Output Files

Control of the particular default files used with the short forms of GET and PUT can be achieved by

means of the following functions and procedures:

function STANDARDJNPUT
function STANDARD_OUTPUT
function CURRENTJNPUT
function CURRENT_OUTPUT

return IN FILE; — returns

return OUT_FILE; -- returns

return IN_FILE; -- returns

return OUT_FILE; — returns

INITIAL default input file

INITIAL default output file

CURRENT default input file

CURRENT default output file

procedure SETJNPUT (FILE : in IN FILE); - sets the default input file to FILE

procedure SET_OUTPUT (FILE : in OUT_FILE); - sets the default output file to FILE

The exception STATUS-ERROR is raised by the functions CURRENTJNPUT and CURRENT-
OUTPUT if there is no corresponding default file, and by the procedure SET-INPUT and

SET-OUTPUT if the parameter is not an open file.

14 - 9

MIL-STD-1815

10 December 1980 Ada Reference Manual

1 4.3.2 Layout

A text file consists of a sequence of lines, numbered from 1 . The characters in each line are con-
sidered to occupy consecutive character positions called columns, counting from 1. Each
character occupies exactly one column. A file may have a particular line length that is explicitly

set by the user. If no line length has been specified, lines can be of any length up to the size of the
file. The line length can be set or reset during execution of a program, so that the same file can be
written using both fixed line length (for instance for the production of tables), and variable line

length (for instance during interactive dialogues). A file which is open (or simply created) has a cur-
rent line number and a current column number. These determine the starting position available for
the next GET or PUT operation.

The following subprograms provide for control of the line structure of the file given as first

parameter, or of the corresponding default file if no file parameter is supplied. Unless otherwise
stated, this default file is the current output file. As in the general case, these subprograms may
raise the USE_ERROR exception if the request is incompatible with the associated external file.

function COL(FILE : in IN FILE) return NATURAL;
function COUFILE : in OUT_FILE) return NATURAL;
function COL return NATURAL;

Returns the current column number.

procedure SET_COL(FILE : in IN_FILE; TO : in NATURAL);
procedure SET_COL(FILE : in OUT_FILE; TO : in NATURAL);
procedure SET_COL(TO : in NATURAL);

Sets the current column number to the value specified by TO. The current line

number is unaffected. The exception LAYOUT_ERROR is raised if the line length has
been specified and is less than the specified column number.

function LINE(FILE : in IN FI LE) return NATURAL;
function LINE(FILE : in OUT_FILE) return NATURAL;
function LINE return NATURAL;

Returns the current line number.

procedure NEW_LINE(FILE : in OUT_FILE; SPACING ; in NATURAL := 1);

procedure NEW_LINE(SPACING : in NATURAL ;= 1);

Resets the current column number to 1 and increments the current line number by
SPACING. Thus a SPACING of 1 corresponds to single spacing, a SPACING of 2 to
double spacing. This terminates the current line and adds SPACING - 1 empty lines.

If the line length is fixed, extra space characters are inserted when needed to fill the
current line and add empty lines.

14 - 10

Input-Output

MIL-STD-1815

10 December 1980

procedure SKIP_LINE(FILE : in I N FILE; SPACING : in NATURAL := 1);

procedure SKIP_LINE(SPACING : in NATURAL := 1);

Resets the current column number to 1 and increments the current line number by
;

SPACING (A value of SPACING greater than 1 causes SPACING - 1 lines to be skip-

ped as well as the remainder of the current line). The default file is the current input

file.

function END_OF_LINE(FILE : in IN_FILE) return BOOLEAN;
function END_OF_LINE return BOOLEAN;

Returns TRUE if the line length of the specified input file is not set, and the current

column number exceeds the length of the current line (that is, if there are no more

characters to be read on the current line), otherwise FALSE. The default file is the cur-

rent input file. (END_OF_LINE is meant to be used primarily for files containing lines

of different lengths).

procedure SET_LINE_LENGTH(FILE : in IN FI LE ; N : in INTEGER);

procedure S ET_LINE_LENGTH (FI LE : in OUT_FILE; N : in INTEGER);

procedure SET_LINE_LENGTH(N : in INTEGER);

Sets the line length of the specified file to the value specified by N. The value zero

indicates that line length is not set; it is the initial value for any file. The exception

LAYOUT_ERROR is raised by a GET operation if a line mark does not correspond to

the specified line length.

function LIN E_LENGTH (FI LE : in IN_FILE) return INTEGER;

function LINE_LENGTH(FILE : in OUT_FILE) return INTEGER;

function LINE_LENGTH return INTEGER;

Returns the current line length of the specified file if it is set, otherwise zero.

Examples :

SET_CO L(((CO L()
- 1)/10 + 1)*10 + 1); -- advance to next multiple of 10

plus 1 on current output-file

if END_OF_LINE(F) then -- advance to next line at end of current line

SKIP_LINE(F); — (the line length of F is not set)

end if;

SET_LINE_LENGTH (F, 132);

References :

character 2.1, exception 11, false 3.5.3, number 2.4, parameter 6, subprogram 6, true 3.5.3

14 - 11

MIL-STD-1815

10 December 1980 Ada Reference Manual

14.3.3 Input-Output of Characters and Strings

The GET and PUT procedures for these types work with individual characters. The current line and
column number are affected as explained below. Special line marks are used to implement the line

structure, in addition to the individual characters.

For an ITEM of type CHARACTER

procedure GET(FILE : in I N FI LE; ITEM : out CHARACTER);
procedure GETOTEM : out CHARACTER);

Returns, in the out parameter ITEM, the value of the character from the specified
input file at the position given by the current line number and the current column
number. Adds 1 to the current column number, unless the line length is fixed and the
current column number equals the line length, in which case the current column
number is set to 1 and the current line number is increased by 1. (This case corres-

ponds to a line mark following the character that was read; thus line marks are
always skipped when the line length is fixed). The default file is the current input file.

procedure PUT(FILE : in OUT_FILE; ITEM : in CHARACTER);
procedure PUTOTEM : in CHARACTER);

Outputs the specified character to the specified output file on the current column of

the current line. Adds 1 to the current column number, unless the line length is fixed

and the current column number equals the line length, in which case a line mark is

output and the current column number is set to 1 and the current line number is

increased by 1. The default file is the current output file.

When the ITEM type is a string, the length of the string is determined and that exact number of

GET or PUT operations for individual characters is carried out.

procedure GET (FILE : in IN FI LE; ITEM : OUT STRING);
procedure GET (ITEM : out STRING);
procedure PUT (FILE : in OUT_FILE; ITEM : in STRING);
procedure PUT (ITEM : in STRING);

In addition, the following functions and procedures are provided:

function GET_STRING(FILE : in IN FI LE) return STRING;
function GET_STRING return STRING;

Performs GET operations on the specified in file, skipping any leading blanks (that is,

spaces, tabulation characters or line marks) and returns as result the next sequence of

characters up to (and not including) a blank. The default file is the current input file.

function GET_LINE(FILE : in I N_FI LE) return STRING;
function GET_LINE return STRING;

Returns the next sequence of characters up to, but not including, a line mark. If the

input line is already at the end of a line, a null string is returned. The input file is

advanced just past the line mark, so successive calls of GET_LINE return successive

lines. The default file is the current input file.

14 - 12

Input-Output

MIL-STD-1815

10 December 1980

procedure PUT_LINE(FILE : in OUT_FILE; ITEM : in STRING),
procedure PUT_LINE(ITEM : in STRING);

Calls PUT to write the given STRING to the specified file, and appends a line mark.
The default file is the current output file.

Example : variable line length

PUT(F, "01234567");
NEW_LINE(F);
PUT(F, "89012345");

will output

01234567
89012345

The string can subsequently be input by

GET_STRING(G) & GET_STRING(G)

Alternatively, it can be obtained by

X : STRINGI1 .. 16);

GET(G, X(1 .. 8));

SKIP_LINE(G);
GET(G, X(9 .. 16));

Example : fixed line length

S ET_LI N E_LENGTH (F, 8);

PUT(F, "0123456789012345");

will output

01234567
89012345

The string can subsequently be input by

X : STRING0 .. 16);

S ET_LIN E_LENGTH (G , 8);

GET(G, X);

Note that the double-quote marks enclosing an actual parameter of PUT are not output, but the

string inside is output with any doubled double-quote marks written once, thus matching the rule

for character strings (see 2.6).

References :

actual parameter 6.4, character 2.1, character string 2.6, character type 3.5.2, double-quote marks 2.6,

function 6, out parameter 6.2, space character 2.1, string 3.6.3, type 3

14 - 13

MIL-STD-1815
10 December 1980 Ada Reference Manual

14.3.4 Input-Output for Other Types

All ITEM types other than CHARACTER or STRING are treated in a uniform way, in terms of lexical

units (see 2.2, 2.3, 2.4). The output is a character string having the syntax described for the
appropriate unit and the input is taken as the longest possible character string having the required
syntax. For input, any leading spaces, leading tabulation characters, and leading line marks are

ignored. A consequence is that no such units can cross a line boundary.

If the character string read is not consistent with the syntax of the required lexical unit, the excep-
tion DATA_ERROR is raised.

The PUT procedures for numeric and enumeration types include an optional WIDTH parameter,
which specifies a minimum number of characters to be generated. If the width given is larger than
the string representation of the value, the value will be preceded (for numeric types) or followed
(for enumeration types) by the appropriate number of spaces. If the field width is smaller than the
string representation of the value, the field width is ignored. A default width of 0 is provided, thus
giving the minimum number of characters.

In each PUT operation, if the line can accommodate all the characters generated, then the
characters are placed on that line from the current column. If the line cannot accommodate all the
characters, then a new line is started and the characters are placed on the new line starting from
column 1 . If however the line length is fixed and smaller than the length of the string to be output,
then the exception LAYOUT_ERROR is raised instead, and a new line is not started.

For each GET operation an IN file may be specified, and the default file is the current input file. For
each PUT operation an OUT file may be specified, and the default file is the current output file.

References

:

character string 2.6, character type 3.5.2, enumeration type 3.5.1, exception 11, in_file 14.1, lexical unit
2.2, numeric type 3.5, out_file 14.1, space character 2.1, string type 3.6.3, tabulation character 2.2

14.3.5 Input-Output for Numeric Types

Input for numeric types is defined by means of three generic packages; these packages must be
instantiated for the corresponding numeric types (indicated by NUM in the specifications given
here).

14 14

Input-Output

MIL-STD-1815

10 December 1980

Integer types :

The following procedures are defined in the generic package INTEGER_IO:

procedure GET(FILE : in IN FI LE; ITEM : out NUM);
procedure GET(ITEM : out NUM);

Reads an optional plus or minus sign, then according to the syntax of an integer literal

(which may be a based number). The value obtained is imp icitly converted to the

type of the out parameter ITEM (see 3.5.4), and returned in ITEM if the converted

value is within the range of this type; otherwise the exception CONSTRAINT_ERROR
is raised and ITEM is unaffected.

procedure PUT(FILE : in OUT.FILE;
ITEM : in NUM;
WIDTH : in INTEGER := 0;

BASE : in INTEGER rang® 2 .. 16 := 10);

procedure PUTOTEM : in NUM;
WIDTH : in INTEGER := 0;

BASE : in INTEGER range 2 .. 16 := 10);

Expresses the value of the parameter ITEM as an integer literal, with no underscores
and no leading zeros (but a single 0 for the value zero), and a preceding minus sign for

a negative value. Uses the syntax of based number if the parameter BASE is given

with a value different from 10 (the default value), otherwise the syntax of decimal
number.

Examples:

In the examples for numeric types the string quotes are shown only to reveal the layout; they are

not output. Similarly leading spaces are indicated by the lower letter b.

PUT(126); - "126"

PUT(-126, 7); - "bbb-126"
PUT(126, WIDTH => 13, BASE => 2); - "bbb2#1 1 1 1 1 10#"

Floating point numbers :

The following procedures are defined in the generic package FLOATJO:

procedure GET(FILE : in IN FILE ; ITEM: out NUM);
procedure GETOTEM : out NUM);

Reads an optional plus or minus sign, then according to the syntax of a real literal

(which may be a based number). The value obtained is implicitly converted to the type
of the out parameter ITEM (see 3.5.7), and returned in ITEM if the converted value is

within the range of this type; otherwise the exception CONSTRAINT_ERROR is raised

and ITEM is unaffected.

14 - 15

Ada Reference Manual
MIL-STD-1815

10 December 1980

procedure PUT(FILE
ITEM
WIDTH
MANTISSA
EXPONENT

procedure PUT(ITEM
WIDTH
MANTISSA
EXPONENT

in OUT.FILE;
in NUM;
in INTEGER := 0;

in INTEGER := NUM'DIGITS;
in INTEGER := 2);

in NUM;
in INTEGER := 0;

in INTEGER := NUM'DIGITS;
in INTEGER ;= 2);

Expresses the value of the parameter ITEM as a decimal number, with no under-
scores, a preceding minus sign for a negative value, a mantissa with the decimal point
immediately following the first non-zero digit and no leading zeros (but 0.0 for the

value zero), and a signed exponent part. A minimum number of digits in the mantissa
(excluding sign and point characters) can be specified (leading zeros being supplied as
necessary); the default value is given by the type of ITEM; rounding is performed if

fewer digits are specified than the implemented precision. A minimum number of

digits in the exponent part (excluding sign and E) can be specified (leading zeros being
supplied as necessary); the default value is 2; if the value of ITEM needs more digits

than specified for the exponent part, the exact number of significant digits is used.

Examples:

package REALJO is new FLOATJO(REAL); use REAL_IO;
X : REAL := 0.001266; - digits 8

PUT(X); - "1.2660000E-03"
PUT(X, WIDTH => 14, MANTISSA => 4, EXPONENT => 1); - "bbbbbbl .266E-3"

Fixed point numbers:

The following procedures are defined in the generic package FIXEDJO:

procedure GET(FILE : in IN_FILE; ITEM : out NUM);
procedure GET(ITEM : out NUM);

Reads an optional plus or minus sign, then according to the syntax of a real literal

(which may be a based number). The value obtained is implicitly converted to the
type of the out parameter ITEM (see 3.5.9), rounded to the implemented delta for the
type, and returned in ITEM if the resulting value is within the range of the type;

otherwise the exception CONSTRAINT_ERROR is raised and ITEM is unaffected.

procedure PUT(FILE
ITEM
WIDTH
FRACT

procedure PUTOTEM
WIDTH
FRACT

: in OUT_FILE;
: in NUM;
: in INTEGER := 0;

: in INTEGER ;= DEFAULT_DECIMALS);
: in NUM;
: in INTEGER := 0;

: in INTEGER := DEFAULT_DECIMALS);

Expresses the value of the parameter ITEM as a decimal number, with no under-
scores, a preceding minus sign for a negative value, and a mantissa but no exponent
part. At least one digit precedes the decimal point; if this requires leading zeros, just

the number needed are inserted. The number of digits after the point can be
specified; the default value is given by the type of ITEM; rounding is performed if

fewer digits are specified than are needed to represent the delta of the type.

>

14 - 16

Input-Output
MIL-STD-1815
10 December 1980

Example

:

type FIX is delta 0.05 rang® -10 .. 10;

package FIX 10 is new FIXED I0(FIX);

use FIX 10;

X : FIX := 1.25;

PUT(X); -- "1.25"

PUT(X, WIDTH => 8, FRACT => 3); - "bbbl.250"

PUTIX-1.3); -- "-0.05"

References-.

based number 2.4.1, constraint_error exception 11.1, decimal number 2.4, digit 2.1, exception 11, expo-

nent part 2.4, fixed point number 3.5.9, floating point number 3.5.7, generic package 12.1, generic package

instantiation 12.3, integer literal 2.4, integer type 3.5.4, layout_error exception 14.3.2, mantissa 3.5.7,

minus sign 2.4 4.5.4, numeric type 3.5, out parameter 6.2, plus sign 2.4 4.5.9, point character 2.4, preci-

sion 3.5.6, range 3.5, real literal 2.4, sign character 4.5.4, underscore 2.3 2.4.1

14.3.6 Input-Output for Boolean Type

procedure GET(FILE : in IN FILE ; ITEM : out BOOLEAN);
procedure GET(ITEM : out BOOLEAN);

Reads an identifier according to the syntax given in 2.3, with no distinction between

corresponding upper and lower case letters. If the identifier is TRUE or FALSE, then

the boolean value is given; otherwise the exception DATA_ERROR is raised.

procedure PUT(FILE
ITEM
WIDTH
LOWER_CASE

procedure PUTOTEM
WIDTH
LOWER_CASE

; in 0UT_FILE ;

: in BOOLEAN;
: in INTEGER := 0;

: in BOOLEAN := FALSE);

: in BOOLEAN;
: in INTEGER := 0;

; in BOOLEAN := FALSE);

Expresses the value of the parameter ITEM as the words TRUE or FALSE. An optional

parameter is used to specify upper or lower case (default is upper case). If a value of

WIDTH is given, exceeding the number of letters produced, then spaces follow to fill a

field of this width.

Note:

The procedures defined in this section are directly available (that is, not by generic instantiation).

References:

boolean type 3.5.3, boolean value 3.5.3, data_error exception 14.3.4, exception 1 1, false 3.5.3, identifier

2.3, space character 2.1, true 3.5.3

14 - 17

MIL-STD-1815

10 December 1980 Ada Reference Manual

14.3.7 Input-Output for Enumeration Types

Because each enumeration type has its own set of literals, these procedures are contained in the

generic package ENUMERATIONJO. An instantiation must specify the type, indicated here by
ENUM.

procedure GET(FILE : in IN_FILE; ITEM : out ENUM);
procedure GETOTEM : out ENUM);

Reads an identifier (according to the syntax given in 2.3, with no distinction between
corresponding upper and lower case letters) or a character literal (according to the

syntax of 2.5, a character enclosed by single quotes). If this is one of the enumeration
literals of the type, then the enumeration value is given; otherwise the exception

DATA_ERROR is raised.

procedure PUT(FILE ; in OUT_FILE;
ITEM : in ENUM;
WIDTH : in INTEGER := 0;

LOWER_CASE : in BOOLEAN := FALSE);

procedure PUT(ITEM : in ENUM;
WIDTH : in INTEGER := 0;

LOWER-CASE : in BOOLEAN := FALSE);

Outputs the value of the parameter ITEM as an identifier or as a character literal. An
optional parameter indicates upper or lower case for identifiers (default is upper case);

it has no effect for character literals. If a field width is given, exceeding the number of

characters produced, then spaces follow to fill a field of this width.

Note :

There is a difference between PUT defined for characters, and for enumeration values. Thus

TEXTJO.PUT('A'); - the character A

package CHARJO is new TEXT_IO.ENUMERATION_IO(CHARACTER);
CHAR_IO.PUT('A'); -- the character 'A' between single quotes

References'.

character literal 2.5, data_error exception 14.3.4, enumeration literal 3.5.1, enumeration type 3.5.1,

generic package 12.1, generic instantiation 12.3, literal 2.4 3.2 4.2, procedure 6, type 3

14 - 18

Input-Output

MIL-STD-1815

10 December 1980

14.4 Specification of the Package Text_IO

The package TEXTJO contains the definition of all the text input-output primitives,

package TEXT_IO is

package CHARACTER_IO is new INPUT_OUTPUT(CHARACTER);

type I N FI LE is new CHARACTER_IO.IN_FILE;
type OUT_FILE is new CHARACTERJO.OUT_FILE;

— Character Input-Output

procedure GET (FILE

procedure GET (ITEM
procedure PUT (FILE

procedure PUT (ITEM

: in IN.FILE; ITEM : out CHARACTER);
: out CHARACTER);
: in OUT_FILE; ITEM : in CHARACTER);
: in CHARACTER);

— String Input-Output

procedure GET (FILE : in I N FI LE ; ITEM : out STRING);

procedure GET (ITEM : out STRING);

procedure PUT (FILE : in OUT_FILE; ITEM : in STRING);

procedure PUT (ITEM : in STRING);

function GET_STRING(FILE : in I N_FI LE) return STRING;
function GET_STRING return STRING;

function GET_LINE (FILE : in IN_FILE) return STRING;
function GET_LINE return STRING;
procedure PUT_LINE (FILE : in OUT_FILE, ITEM : in STRING);

procedure PUT_LINE (ITEM : in STRING);

-- Generic package for Integer Input-Output

generic

type NUM is range <>;
with function IMAGEfX : NUM) return STRING is NUM'IMAGE;
with function VALUE(X : STRING) return NUM is NUM'VALUE;

package INTEGER_IO is

procedure GET (FILE in 1 N FI LE ; ITEM : out NUM);
procedure GET ITEM out NUM);
procedure PUT FILE in OUT_FILE;

ITEM in NUM;
WIDTH in INTEGER := 0;

BASE in INTEGER range 2 .. 16 := 10);

procedure PUT (ITEM in NUM;
WIDTH in INTEGER := 0;

BASE in INTEGER range 2 .. 16 := 10);

end INTEGERJO;

14 19

MIL-STD-1815

10 December 1980 Ada Reference Manual

— Generic package for Floating Point Input-Output

generic

type NUM is digits <>;
with function IMAGE (X : NUM) return STRING is NUM'IMAGE;
with function VALUE (X : STRING) return NUM is NUM'VALUE;

package FLOATJO is

procedure GET(FILE : in IN_FILE ; ITEM: out NUM);
procedure GETOTEM : out NUM);

procedure PUTfFILE
ITEM
WIDTH
MANTISSA
EXPONENT

in OUT.FILE;
in NUM;
in INTEGER := 0;

in INTEGER := NUM'DIGITS;
in INTEGER := 2);

*

procedure PUT(ITEM
WIDTH
MANTISSA
EXPONENT

end FLOATJO;

in NUM;
in INTEGER
in INTEGER
in INTEGER

0 ;

NUM'DIGITS;
2);

-- Generic package for Fixed Point Input-Output

generic

type NUM is delta <>;
with function IMAGE (X : NUM) return STRING is NUM'IMAGE;
with function VALUE (X ; STRING) return NUM is NUM'VALUE;

package FIXEDJO is

DELTAJMAGE : constant STRING := IMAGE(NUM'DELTA - INTEGER(NUM'DELTA));
DEFAULT_DECIMALS : constant INTEGER := DELTAJMAGE'LENGTH - 2;

procedure GET (FILE : in 1 N FI LE; ITEM : out NUM);
procedure GET (ITEM : out NUM);

procedure PUT (FILE in OUT_FILE;
ITEM in NUM;
WIDTH in INTEGER := 0;

FRACT in INTEGER := DEFAULT_DECIMALS);

procedure PUT (ITEM in NUM;
WIDTH in INTEGER := 0;

FRACT in INTEGER := DEFAULT_DECIMALS);
end FIXED_IO;

14 - 20

Input-Output
MIL-STD-1815

10 December 1980

— Input-Output for Boolean

procedure GET (FILE : in I N FI LE ; ITEM : out BOOLE AN);

procedure GET (ITEM : out BOOLEAN);

procedure PUT (FILE : in OUT_FILE ;

ITEM : in BOOLEAN;
WIDTH : in INTEGER := 0;

LOWER_CASE : in BOOLEAN := FALSE);

procedure PUT (ITEM : in BOOLEAN;
WIDTH : in INTEGER := 0;

LOWER_CASE : in BOOLEAN := FALSE);

— Generic package for Enumeration Types

generic

type ENUM is (<>);

with function IMAGE (X : ENUM) return STRING is ENUMTMAGE;
with function VALUE (X : STRING) return ENUM is ENUM'VALUE;

package ENUMERATIONS is

procedure GET (FILE : in IN FILE; ITEM : out ENUM);
procedure GET (ITEM : out ENUM);

procedure PUT (FILE : in OUT_FILE ;

ITEM : in ENUM;
WIDTH : in INTEGER := 0;

LOWER_CASE : in BOOLEAN := FALSE);

procedure PUT (ITEM : in ENUM;
WIDTH : in INTEGER := 0;

LOWER_CASE ; in BOOLEAN := FALSE);

end ENUMERATIONS;

-- Layout control

function L!NE(FILE ; in I N FILE) return NATURAL;
function LINE(FILE : in OUT_FILE) return NATURAL;
function LINE return NATURAL; -- for default output file

function CO L(FILE : in I N FI LE) return NATURAL;
function COL(FILE : in OUT_FILE) return NATURAL;
function COL return NATURAL; -- for default output file

procedure SET_COL(FILE : in I N FI LE; TO : in NATURAL);
procedure SET_COL(FILE ; in OUT_FILE; TO : in NATURAL);
procedure SET_COL(TO : in NATURAL); -- for default output file

14 - 21

MIL-STD-1815

10 December 1980 Ada Reference Manual

procedure NEW_LINE(FILE : in OUT_FILE; N : in NATURAL := 1);

procedure NEW_LINE(N : in NATURAL := 1);

procedure SKIP_LINE(FILE : in IN_FILE; N : in NATURAL := 1);

procedure SKIP_LINE(N : in NATURAL := 1);

function END_OF_UNE(FILE : in IN_FILE) return BOOLEAN;
function END_OF_LINE return BOOLEAN;

procedure SET_LINE_LENGTH(FILE : in I N FILE; N : in INTEGER);
procedure SET_LINE_LENGTH(FILE : in OUT_FILE; N : in INTEGER);
procedure SET_LINE_LENGTH(N : in INTEGER); -- for default output file

function LINE_LENGTH(FILE : in I N FI LE) return INTEGER;
function LINE_LENGTH(FILE : in OUT_FILE) return INTEGER;
function LINE_LENGTH return INTEGER; — for default output file

-- Default input and output manipulation

function STANDARDJNPUT return I N FI LE;

function STANDARD_OUTPUT return OUT_FILE;

function CURRENTJNPUT return IN_FILE;

function CURRENT_OUTPUT return OUT_FILE;

procedure SETJNPUT (FILE : in I N FI LE);

procedure SET_OUTPUT (FILE : in OUT_FILE);

-- Exceptions

NAME_ERROR
USE_ERROR
STATUS_ERROR
DATA_ERROR
DEVICE_ERROR
END_ERROR
LAYOUT_ERROR

end TEXTJO;

exception renames
exception renames
exception renames
exception renames
exception renames
exception renames
exception;

CHARACTER_IO.NAME_ERROR;
CHARACTER_IO.USE_ERROR;
CHARACTER_IO.STATUS_ERROR;
CHARACTER_IO.DATA_ERROR;
CHARACTER_IO.DEVICE_ERROR;
CHARACTER_IO.END_ERROR;

References :

boolean type input-output 14.3.6, character input-output 14.3.3, default input-output 14.3.1, enumeration
type input-output 1 4.3.7, exceptions for input-output 14.1.1 14.1.2 14.3.2 14.3.4, fixed point input-output

14.3.5, floating point input-output 14.3.5, generic package 12.1, integer input-output 14.3.5, item
parameter 14.3, layout for input-output 14.3.2, package 7, string input-output 14.3.3

14 - 22

Input-Output MIL-STD-1815

10 December 1980

14.5 Example of Text Input-Output

The following example shows the use of the text input-output primitives in a dialogue with a user

at a terminal. The user is asked to select a color, and the program output in response is the

number of items of the color available in stock. The default input and output files are used.

procedure DIALOGUE is

use TEXT_IO;
type COLOR is (WHITE, RED, ORANGE, YELLOW, GREEN, BLUE, BROWN);
INVENTORY : array (COLOR) of INTEGER := (20, 17, 43, 10, 28, 173, 87);

CHOICE COLOR*
package COLORJO is new ENUMERATIONJO(COLOR); us© COLORJO;

function ENTER_COLOR return COLOR is

SELECTION : COLOR;
begin

loop

begin

PUT("Color selected: ");

GET(SELECTION);
return SELECTION;

exception

when DATA-ERROR =>
PUT("lnvalid color, try again. ");

end;

end loop;

end;

begin — body of DIALOGUE;
CHOICE := ENTER_COLOR();
NEWJJNE;
PUT(CHOICE, LOWER-CASE => TRUE);
PUT(” items available: ");

SET_COL(25);
PUT(INVENTORY(CHOICE), WIDTH => 5);

PUT(";");

NEWJJNE;
end DIALOGUE;

Example of an interaction (characters typed by the user are italicized):

Color selected: black

Invalid color, try again. Color selected: blue

blue items available: 173;

References'.

default input file 14.3, default output file 14.3, text input-output primitives 14.4

14 - 23

MIL-STD-1815
10 December 1980 Ada Reference Manual

14.6 Low Level Input-Output

A low level input-output operation is an operation acting on a physical device. Such an operation
is handled by using one of the (overloaded) predefined procedures SEND_CONTROL and
RECEIVE_CONTROL.

A procedure SEND_CONTROL may be used to send control information to a physical device. A
procedure RECEIVE_CONTROL may be used to monitor the execution of an input-output opera-
tion by requesting information from the physical device.

Such procedures are declared in the standard package LOW_LEVEL_IO and have two parameters
identifying the device and the data. However, the kinds and formats of the control information will

depend on the physical characteristics of the machine and the device. Hence the types of the
parameters are implementation defined. Overloaded definitions of these procedures should be
provided for the supported devices.

The visible part of the package defining these procedures is outlined as follows:

package LOW_LEVEL_IO is

— declarations of the possible types for DEVICE and DATA;
— declarations of overloaded procedures for these types:

procedure SEND_CONTROL (DEVICE : device_type: DATA : in out data type)-,

procedure RECEIVE_CONTROL (DEVICE : device_type-, DATA : in out data type)-,

end;

The bodies of the procedures SEND_CONTROL and RECEIVE_CONTROL for various devices can
be supplied in the body of the package LOW_LEVEL_IO. These procedure bodies may be written
with code statements.

References :

actual parameter 6.4, code statement 13.8, overloaded definition 3.4, overloaded predefined procedure
6.6, package 7, package body 7.1 7.3, procedure 6.1, procedure body 6.1, type 3, visible part 7.2

14 - 24

MIL-STD-1815

10 December 1980

A. Predefined Language Attributes

The following attributes are predefined in the language. They are denoted in the manner described

in 4.1.4: the name of an entity is followed by a prime, and then by the identifier of an attribute

appropriate to the entity.

Attribute of any object or subprogram X

ADDRESS A number corresponding to the first storage unit occupied by X (see 13.7).

Overloaded on all predefined integer types.

Attribute of any type or subtype T (except a task type)

BASE Applied to a subtype, yields the base type; applied to a type, yields the type itself.

This attribute may be used only to obtain further attributes of a type, e.g. T'BASE'-

FIRST (see 3.3).

SIZE The maximum number of bits required to hold an object of that type (see 13.3). Of

type INTEGER.

Attributes of any scalar type or subtype T

FIRST The minimum value of T (see 3.5).

LAST The maximum value of T (see 3.5).

IMAGE If X is a value of type T, T'IMAGE(X) is a string representing the value in a standard

display form.

For an enumeration type, the values are represented, in minimum width, as either

the corresponding enumeration literal, in upper case, or as the corresponding

character literal, within quotes.

For an integer type, the values are represented as decimal numbers of minimum
width. For a fixed point type, the values are represented as decimal fractions of

minimum width, with sufficient decimal places just to accommodate the declared

accuracy. For a floating point type, the values are represented in exponential nota-

tion with one significant characteristic digit, sufficient mantissa digits just to accom-
modate the declared accuracy, and a signed three-digit exponent. The exponent let-

ter is in upper case. For all numeric types, negative values are prefixed with a minus

sign and positive values have no prefix.

A - 1

MIL-STD-1815

10 December 1980 Ada Reference Manual

VALUE If S is a string, T'VALUE(S) is the value in T that can be represented in

display form by the string S. If the string does not denote any possible

value, the exception DATA_ERROR is raised; if the value lies outside the

range of T, the exception CONSTRAINT_ERROR is raised. All legal lexical

forms are legal display forms (see 2.3, 2.4).

Attributes of any discrete type or subtype T

POS If X is a value of type T, T'POS(X) is the integer position of X in the

ordered sequence of values T'FIRST .. T'LAST, the position of T'FIRST
being itself for integer types and zero for enumeration types (see 3.5.5).

VAL If J is an integer, T'VAL(J) is the value of enumeration type T whose POS
is J. If no such value exists, the exception CONSTRAINT_ERROR is

raised (see 3.5.5).

PRED If X is a value of type T, T'PRED(X) is the preceding value. The exception
CONSTRAINT_ERROR is raised if X = T'FIRST (see 3.5.5).

SUCC If X is a value of type T, T'SUCC(X) is the succeeding value. The excep-
tion CONSTRAINT_ERROR is raised if X = T'LAST (see 3.5.5).

Attributes of any fixed point type or subtype T

DELTA The delta specified in the declaration of T (see 3.5.1 0). Of type universal

real.

ACTUAL_DELTA The delta of the model numbers used to represent T (see 3.5.10). Of type
universal real.

BITS

LARGE

The number of bits required to represent the model numbers of T (see

3.5.10). Of type universal integer.

The largest model number of T (see 3.5.10). Of type universal real.

MACHINE_ROUNDS True if the machine performs true rounding (to nearest even) when com-
puting values of type T (see 13.7.1). Of type BOOLEAN.

Attributes of any floating point type or subtype T

DIGITS

MANTISSA

EMAX

SMALL

The number of digits specified in the declaration of T (see 3.5.8). Of type

universal integer.

The number of bits in the mantissa of the representation of model
numbers of T (see 3.5.8). Of type universal integer.

The largest exponent value of the representation of model numbers of T
(see 3.5.8). The smallest exponent value is -EMAX. Of type universal

integer.

The smallest positive model number of T (see 3.5.8). Of type universal

real.

A - 2

Predefined Language Attributes
MIL-STD-1815

10 December 1980

LARGE

EPSILON

MACHINE_RADIX

MACHINE_MANTISSA

MACHINE_EMAX

MACHINE_EMIN

MACHINE_ROUNDS

MACH I NE_OVER FLOWS

Attributes of any array type

FIRST

FIRST(J)

LAST

LAST(J)

LENGTH

LENGTH(J)

RANGE

The largest model number of T (see 3.5.8). Of type universal real.

The difference between unity and the smallest model number of T
greater than unity (see 3.5.8). Both unity and T'EPSILON are model
numbers of T. Of type universal real.

The radix of the exponent of the underlying machine representation

of T (see 13.7.1). Of type universal integer.

The number of bits in the mantissa of the underlying machine
representation of T (see 13.7.1). Of type universal integer.

The largest exponent value of the underlying machine representation

of T (see 13.7.1). Of type universal integer.

The smallest exponent value of the underlying machine representa-

tion of T (see 13.7.1). Of type universal integer.

True if the machine performs true rounding (to nearest even) when
computing values of type T (see 13.7.1). Of type BOOLEAN.

True if, when a computed value is too large to be represented cor-

rectly by the underlying machine representation of T, the exception
NUMERIC_ERROR is raised (see 13.7.1). Of type BOOLEAN.

or subtype, or object thereof

If A is a constrained array type or subtype, or an array object,

A'FIRST is the lower bound of the first index (see 3.6.2).

Similarly, the lower bound of the J’th index, where J must be a static

integer expression (see 3.6.2).

If A is a constrained array type or subtype, or an array object, A'LAST
is the upper bound of the first index (see 3.6.2).

Similarly, the upper bound of the J'th index, where J must be a static

integer expression (see 3.6.2).

If A is a constrained array type or subtype, or an array object,

A'LENGTH is the number of elements in the first dimension of A (see

3.6.2).

Similarly, the number of elements in the J'th dimension, where J
must be a static expression (see 3.6.2).

If A is a constrained array type or subtype, or an array object,

A'RANGE is the subtype A'FIRST .. A'LAST, whose base type is the
first index type of A (see 3.6.2).

A - 3

MIL-STD-1815
10 December 1980 Ada Reference Manual

RANGE(J) Similarly, the subtype A'FIRST(J) .. A'LAST(J), whose base type is

the J'th index type of A, and where J must be a static integer expres-

sion (see 3.6.2).

Attribute of any record type with discriminants

CONSTRAINED If R is an object of any record type with discriminants, or of any subtype
thereof, R'CONSTRAINED is true if and only if the discriminant values of R

cannot be modified (see 3.7.2). Of type BOOLEAN.

Attributes of any record component C

POSITION The offset within the record, in storage units, of the first unit of storage

occupied by C (see 13.7). Of type INTEGER.

FIRST_BIT The offset, from the start of C'POSITION, of the first bit used to hold the

value of C (see 13.7). Of type INTEGER.

LAST-BIT The offset, from the start of C'POSITION, of the last bit used to hold the

value of C. C'LAST_BIT need not lie within the same storage unit as

C'FIRST_BIT (see 13.7). Of type INTEGER.

Attribute of any access type P

STORAGE_SIZE The total number of storage units reserved for allocation for all objects of

type P (see 13.2). Overloaded on all predefined integer types.

Attributes of any task, or object of a task type, T

TERMINATED True when T is terminated (see 9.9). Of type BOOLEAN.

PRIORITY The (static) priority of T (see 9.9). Of type universal integer.

FAILURE The exception that, if raised, causes FAILURE within T (see 9.9).

STORAGE-SIZE The number of storage units allocated for the execution of T (see 9.9).

Overloaded on all predefined integer types.

Attribute of any entry E

COUNT Momentarily, the number of calling tasks waiting on E (see 9.9). Of type

INTEGER.

A - 4

Pragma

CONTROLLED

INCLUDE

INLINE

INTERFACE

LIST

MEMORY_SIZE

OPTIMIZE

PACK

PRIORITY

STORAGE_UNIT

MIL-STD-1815

10 December 1980

B. Predefined Language Pragmas

Meaning

Takes an access type name as argument. It must appear in the same
declarative part as the access type definition (see 4.8). It specifies that

automatic storage reclamation should not be performed for objects of the

access type except upon leaving the scope of the access type definition

(see 4.8).

Takes a string as argument, which is the name of a text file. This pragma
can appear anywhere a pragma is allowed. It specifies that the text file is

to be included where the pragma is given.

Takes a list of subprogram names as arguments. It must appear in the

same declarative part as the named subprograms. It specifies that the sub-

program bodies should be expanded inline at each call (see 6.3).

Takes a language name and subprogram name as arguments. It must
appear after the subprogram specification in the same declarative part or in

the same package specification. It specifies that the body of the sub-

program is written in the given other language, whose calling conventions

are to be observed (see 13.9).

Takes ON or OFF as argument. This pragma can appear anywhere. It

specifies that listing of the program unit is to be continued or suspended
until a LIST pragma is given with the opposite argument.

Takes an integer number as argument. This pragma can only appear before

a library unit. It establishes the required number of storage units in memory
(see 13.7).

Takes TIME or SPACE as argument. This pragma can only appear in a

declarative part and it applies to the block or body enclosing the

declarative part. It specifies whether time or space is the primary optimiza-

tion criterion.

Takes a record or array type name as argument. The position of the pragma
is governed by the same rules as for a representation specification. It

specifies that storage minimization should be the main criterion when
selecting the representation of the given type (see 13.1).

Takes a static expression as argument. It must appear in a task (type)

specification or the outermost declarative part of a main program. It

specifies the priority of the task (or tasks of the task type) or the main
program (see 9.8).

Takes an integer number as argument. This pragma can only appear before

a library unit. It establishes the number of bits per storage unit (see 1 3.7).

B - 1

MIL-STD-1815
10 December 1980 Ada Reference Manual

SUPPRESS

SYSTEM

Takes a check name and optionally also either an object name or a type

name as arguments. It must appear in the declarative part of a unit (block

or body). It specifies that the designated check is to be suppressed in the

unit. In the absence of the optional name, the pragma applies to all opera-

tions within the unit. Otherwise its effect is restricted to operations on the

named object or to operations on objects of the named type (see 1 1.7).

Takes a name as argument. This pragma can only appear before a library

unit. It establishes the name of the object machine (see 13.7).

B

MIL-STD-1815

10 December 1980

C. Predefined Language Environment

This appendix outlines the specification of the package STANDARD containing all predefined iden-

tifiers in the language. The corresponding package body is implementation defined and is not

shown.

package STANDARD is

type BOOLEAN is (FALSE, TRUE);

function "not" (X : BOOLEAN) return BOOLEAN;

function "and" (X,Y : BOOLEAN) return BOOLEAN;
function "or" (X,Y : BOOLEAN) return BOOLEAN;
function "xor" (X,Y : BOOLEAN) return BOOLEAN;

type SHORTJNTEGER is range implementation defined',

type INTEGER is range implementation_defined:

type LONG_INTEGER is range implementation defined)

function "+" (X : INTEGER) return INTEGER;
function (X : INTEGER) return INTEGER;
function ABS (X : INTEGER) return INTEGER;

function '+" (X,Y : INTEGER) return INTEGER;
function "-" (X,Y : INTEGER) return INTEGER;
function "*" (X,Y : INTEGER) return INTEGER;
function 7" (X,Y : INTEGER) return INTEGER;
function "rem" (X,Y : INTEGER) return INTEGER;
function "mod" (X,Y : INTEGER) return INTEGER;
function "**" (X : INTEGER; Y : INTEGER range 0 .. INTEGER'LAST) return INTEGER;

- Similarly for SHORTJNTEGER and LONGJNTEGER

type SHORT_FLOAT is digits implementationjdefined range implementation_defined)
type FLOAT is digits implementation defined range implementationjdefined)
type LONG_FLOAT is digits implementation defined range implementationjdefined)

function (X : FLOAT) return FLOAT;
function (X : FLOAT) return FLOAT;
function ABS (X : FLOAT) return FLOAT;

function (X,Y ; FLOAT) return FLOAT;
function (X,Y : FLOAT) return FLOAT;
function (X,Y : FLOAT) return FLOAT;
function 7"

__

(X,Y : FLOAT) return FLOAT;
function (X : FLOAT; Y : INTEGER) return FLOAT;

- Similarly for SHORT_FLOAT and LONG_FLOAT

C - 1

MIL-STD-1815

10 December 1980 Ada Reference Manual

— The following characters comprise the standard ASCII character set.
-- Character literals corresponding to control characters are not identifiers;
-- They are indicated in italics in this definition:

type CHARACTER is

(nul, soh, stx, etx, eot, enq, ack, bel,

bs, ht, If, tft. ff. cr, so, si,

die, del, dc2, dc3, dc4, nak, syn, etb,

can, em, sub, esc, fs, gs, rs, us,

T,
""

'$',

t/ T,' V,
t i

*
9 • 9 v\

'O', '2', '3', '4', '5', '6', '7',

'9',
• 9

'A', 'B', 'C', D', 'E', 'F', 'G',

'H\ T, 'J\ 'K', 'L', 'M', 'N', 'O',

'P', ’CL
1

, 'R', 'S', T, 'U', 'V', W,
'X', y. T. 'V,

row

'v
. 'a', 'b', 'c'. 'd'. 'e'. T, g'r

'h\ T, T. 'k', T. 'm', 'n', 'o',

'p'.
q'r y. 's'. 't'. 'u'. 'v', 'w'.

V, V, y, T. T. t. cfe/);

package ASCII is

Control characters:

NUL : constant CHARACTER = nul:

SOH : constant CHARACTER = sob:

STX : constant CHARACTER = stx:

ETX : constant CHARACTER = etx:

EOT : constant CHARACTER = eot:

ENQ : constant CHARACTER = enq:
ACK : constant CHARACTER = ack:

BEL : constant CHARACTER — bet:

BS : constant CHARACTER = bs:

HT : constant CHARACTER = ht:

LF : constant CHARACTER = If:

VT : constant CHARACTER = vt:

FF : constant CHARACTER = ff:

CR : constant CHARACTER = cr:

SO : constant CHARACTER = so:

SI : constant CHARACTER = si:

DLE : constant CHARACTER = die:

DC1 : constant CHARACTER = del:
DC2 : constant CHARACTER = dc2:
DC3 : constant CHARACTER = dc3:
DC4 : constant CHARACTER = dc4;

C - 2

Predefined Language Environment
MIL-STD-1815

10 December 1980

NAK : constant CHARACTER := nak;

SYN : constant CHARACTER := syrr,

ETB : constant CHARACTER := etb;

CAN : constant CHARACTER := can;

EM : constant CHARACTER := em;
SUB : constant CHARACTER := sub;

ESC : constant CHARACTER := esc;

FS : constant CHARACTER := fs;

GS : constant CHARACTER := gs;

RS : constant CHARACTER := rs;

US : constant CHARACTER := us;

DEL : constant CHARACTER := del;

-- Other characters

EXCLAM : constant CHARACTER
SHARP : constant CHARACTER
DOLLAR : constant CHARACTER
QUERY : constant CHARACTER
AT_SIGN : constant CHARACTER
LBRACKET : constant CHARACTER
BACK_SLASH : constant CHARACTER
R_BRACKET : constant CHARACTER
CIRCUMFLEX : constant CHARACTER
GRAVE : constant CHARACTER
L_BRACE : constant CHARACTER
BAR : constant CHARACTER
R_BRACE : constant CHARACTER
TILDE : constant CHARACTER

— Lower case letters

LC_A : constant CHARACTER := 'a
r

;

LC_Z : constant CHARACTER := z

end ASCII;

— Predefined types and subtypes

subtype NATURAL is INTEGER rang© 1 .. INTEGER'LAST;

subtype PRIORITY is INTEGER range implementation defined;

type STRING is array!NATURAL rang© <>) of CHARACTER;

type DURATION is delta implementation defined rang© implementation defined;

— The predefined exceptions

CONSTRAINT_ERROR : exception;

NUMERIC_ERROR : exception;

SELECT_ERROR : exception;

STORAGE_ERROR : exception;

TASKING_ERROR : exception;

C - 3

MIL-STD-1815

10 December 1980 Ada Reference Manual

-- The machine dependent package SYSTEM

package SYSTEM is

type SYSTEM_NAME is implementation_defined_enumeration type;

NAME: constant

STORAGE_UNIT
MEMORY_SIZE
MINJNT
MAXJNT

SYSTEM_NAME
: constant

: constant

: constant

: constant

= implementation defined;

= implementation defined;

= implementation defined;

= implementation defined;

= implementation defined;

end SYSTEM;

private

for CHARACTER use -- 128 ASCII character set without holes

(0, 1, 2, 3, 4, 5 125, 126, 1 27);

pragma PACK(STRING);

end STANDARD;

Certain aspects of the predefined entities cannot be completely described in the language itself.

For example, although the enumeration type BOOLEAN can be written showing the two enumera-
tion literals FALSE and TRUE, the relationship of BOOLEAN to conditions cannot be expressed in

the language.

The language definition predefines certain library units (other than the package STANDARD).
These library units are

The package CALENDAR
- The generic procedure SHARED_VARIABLE_UPDATE
- The generic procedure UNCHECKED_DEALLOCATION
- The generic function UNCHECKED_CONVERSION

The generic package INPUT_OUTPUT
- The package TEXT_IO
- The package LOW_LEVEL_IO

(see 9.6)

(see 9.1 1)

(see 13.10.1)

(see 13.10.2)

(see 14.2)

(see 14.4)

(see 14.6)

C - 4

MIL-STD-1815
10 December 1980

D. Glossary

Access type An access type is a type whose
objects are created by execution of an

allocator. An access value designates such

an object.

Aggregate An aggregate is a written form

denoting a composite value. An array

aggregate denotes a value of an array type; a

record aggregate denotes a value of a record

type. The components of an aggregate may
be specified using either positional or named
association.

Allocator An allocator creates a new object

of an access type, and returns an access

value designating the created object.

Attribute An attribute is a predefined

characteristic of a named entity.

Body A body is a program unit defining the

execution of a subprogram, package, or task.

A body stub is a replacement for a body that

is compiled separately.

Collection A collection is the entire set of

allocated objects of an access type.

Compilation Unit A compilation unit is a

program unit presented for compilation as an

independent text. It is preceded by a context

specification, naming the other compilation

units on which it depends. A compilation unit

may be the specification or body of a sub-

program or package.

Component A component denotes a part of a

composite object. An indexed component is a

name containing expressions denoting
indices, and names a component in an array

or an entry in an entry family. A selected

component is the identifier of the compo-
nent, prefixed by the name of the entity of

which it is a component.

Composite type An object of a composite

type comprises several components. An
array type is a composite type, all of whose
components are of the same type and sub-

type; the individual components are selected

by their indices. A record type is a composite

type whose components may be of different

types; the individual components are

selected by their identifiers.

Constraint A constraint is a restriction on the

set of possible values of a type. A range con-

straint specifies lower and upper bounds of

the values of a scalar type. An accuracy con-

straint specifies the relative or absolute error

bound of values of a real type. An index con-

straint specifies lower and upper bounds of

an array index. A discriminant constraint

specifies particular values of the discrimi-

nants of a record or private type.

Context specification A context specification,

prefixed to a compilation unit, defines the

other compilation units upon which it

depends.

Declarative Part A declarative part is a

sequence of declarations and related infor-

mation such as subprogram bodies and
representation specifications that apply over

a region of a program text.

Derived Type A derived type is a type whose
operations and values are taken from those

of an existing type.

Discrete Type A discrete type has an ordered

set of distinct values. The discrete types are

the enumeration and integer types. Discrete

types may be used for indexing and iteration,

and for choices in case statements and

record variants.

Discriminant A discriminant is a syntactically

distinguished component of a record. The
presence of some record components (other

than discriminants) may depend on the value

of a discriminant.

Elaboration Elaboration is the process by

which a declaration achieves its effect. For

example it can associate a name with a

program entity or initialize a newly declared

variable.

D - 1

MIL-STD-1815
10 -''“.e.ember 1980 Ada Reference Manual

Entity An entity is anything that can be

named or denoted in a program. Objects,

types, values, program units, are all entities.

Entry An entry is used for communication
between tasks. Externally an entry is called

just as a subprogram is called; its internal

behavior is specified by one or more accept

statements specifying the actions to be per-

formed when the entry is called.

Enumeration type An enumeration type is a

discrete type whose values are given explicit-

ly in the type declaration. These values may
be either identifiers or character literals.

Exception An exception is an event that

causes suspension of normal program execu-

tion. Bringing an exception to attention is

called raising the exception. An exception

handier is a piece of program text specifying

a response to the exception. Execution of

such a program text is called handling the

exception.

Expression An expression is a part of a

program that computes a value.

Generic program unit A generic program unit

is a subprogram or package specified with a

generic clause. A generic clause contains the

declaration of generic parameters. A generic

program unit may be thought of as a possibly

parameterized model of program units.

Instances (that is, filled-in copies) of the

model can be obtained by generic instantia-

tion. Such instantiated program units define

subprograms and packages that can be used
directly in a program.

Introduce An identifier is introduced by its

declaration at the point of its first occurrence.

Lexical unit A lexical unit is one of the basic

syntactic elements making up a program. A
lexical unit is an identifier, a number, a

character literal, a string, a delimiter, or a

comment.

Literal A literal denotes an explicit value of a

given type, for example a number, an

enumeration value, a character, or a string.

Model number A model number is an exactly

representable value of a real numeric type.

Operations of a real type are defined in terms
of operations on the model numbers of the

type. The properties of the model numbers
and of the operations are the minimal proper-

ties preserved by all implementations of the

real type.

Object An object is a variable or a constant.

An object can denote any kind of data ele-

ment, whether a scalar value, a composite
value, or a value in an access type.

Overloading Overloading is the property of

literals, identifiers, and operators that can
have several alternative meanings within the

same scope. For example an overloaded
enumeration literal is a literal appearing in

two or more enumeration types; an
overloaded subprogram is a subprogram
whose designator can denote one of several

subprograms, depending upon the kind of its

parameters and returned value.

Package A package is a program unit

specifying a collection of related entities such
as constants, variables, types and sub-
programs. The visible part of a package con-
tains the entities that may be used from out-

side the package. The private part of a

package contains structural details that are

irrelevant to the user of the package but that

complete the specification of the visible

entities. The body of a package contains

implementations of subprograms or tasks

(possibly other packages) specified in the

visible part.

Parameter A parameter is one of the named
entities associated with a subprogram, entry,

or generic program unit. A formal parameter
is an identifier used to denote the named
entity in the unit body. An actual parameter is

the particular entity associated with the cor-

responding formal parameter in a sub-
program call, entry call, or generic instantia-

tion. A parameter mode specifies whether
the parameter is used for input, output or

input-output of data. A positional parameter
is an actual parameter passed in positional

order. A named parameter is an actual

parameter passed by naming the cor-

responding formal parameter.

Glossary
MIL-STD-1815

10 December 1980

Pragma A pragma is an instruction to the

compiler, and may be language defined or

implementation defined.

Private type A private type is a type whose
structure and set of values are clearly

defined, but not known to the user of the

type. A private type is known only by its dis-

criminants and by the set of operations

defined for it. A private type and its

applicable operations are defined in the visi-

ble part of a package. Assignment and com-
parison for equality or inequality are also

defined for private types, unless the private

type is marked as limited.

Qualified expression A qualified expression is

an expression qualified by the name of a type

or subtype. It can be used to state the type

or subtype of an expression, for example for

an overloaded literal.

Range A range is a contiguous set of values

of a scalar type. A range is specified by giving

the lower and upper bounds for the values.

Rendezvous A rendezvous is the interaction

that occurs between two parallel tasks when
one task has called an entry of the other task,

and a corresponding accept statement is

being executed by the other task on behalf of

the calling task.

Representation specification Representation

specifications specify the mapping between
data types and features of the underlying

machine that execute a program. In some
cases, they completely specify the mapping,

in other cases they provide criteria for choos-

ing a mapping.

Scalar types A scalar type is a type whose
values have no components. Scalar types

comprise discrete types (that is, enumeration

and integer types) and real types.

Scope The scope of a declaration is the

region of text over which the declaration has

an effect.

Static expression A static expression is one
whose value does not depend on any

dynamically computed values of variables.

Subprograms A subprogram is an executable

program unit, possibly with parameters for

communication between the subprogram

and its point of call. A subprogram declara-

tion specifies the name of the subprogram

and its parameters; a subprogram body
specifies its execution. A subprogram may
be a procedure, which performs an action, or

a function, which returns a result.

Subtype A subtype of a type is obtained from

the type by constraining the set of possible

values of the type. The operations over a

subtype are the same as those of the type

from which the subtype is obtained.

Task A task is a program unit that may
operate in parallel with other program units.

A task specification establishes the name of

the task and the names and parameters of its

entries; a task body defines its execution. A
task type is a specification that permits the

subsequent declaration of any number of

similar tasks.

Type A type characterizes a set of values and

a set of operations applicable to those values

and a set of operations applicable to those

values. A type definition is a language con-

struct introducing a type. A type declaration

associates a name with a type introduced by

a type definition.

Use clause A use clause opens the visibility

to declarations given in the visible part of a

package.

Variant A variant part of a record specifies

alternative record components, depending on

a discriminant of the record. Each value of

the discriminant establishes a particular

alternative of the variant part.

Visibility At a given point in a program text,

the declaration of an entity with a certain

identifier is said to be visible if the entity is an

acceptable meaning for an occurrence at that

point of the identifier.

D - 3

MIL-STD-1815

10 December 1980

E. Syntax Summary

2 3

identifier

letter
| (underscore] letter_or_digit]

letter_or_digit ::= letter
|

digit

letter uppercaseJetter
|
lower_case_letter

2.4

numericjiteral decimal_number
|
based_number

decimal_number ::= integer [.integer] [exponent]

integer ::= digit [[underscore] digit)

exponent ::= E [+] integer
|
E - integer

2.4.1

based_number
base basedjnteger [.based_integer] # [exponent]

base integer

basedjnteger ::=

extended_digit [[underscore] extended_digit)

extended_digit digit
|

letter

2.6

character_string ::= "(character)"

2.8

pragma ::=

pragma identifier [(argument [, argument])];

argument ::=

[identifier =>] name
|

[identifier =>] sfaf/c_expression

3.3

type_deciaration ::=

type identifier [discriminant_part] is type_definition;

|

incomplete_type_declaration

type_definition

enumeration_type_definition
|
integer_type_definition

|

real_type_definition
|
array_type_definition

|

record_type_definition
|
access_type_definition

j

derived_type_definition
|

private_type_definition

subtype_declaration ;:=

subtype identifier is subtypeJndication;

subtypeJndication ::= type_mark [constraint]

type_mark type_name
|
subtypej\an\e

constraint

range_constraint
|
accuracy_constraint

|
index_constraint

|
discriminant_constraint

3.4

derived_type_definition ::= new subtypeJndication

3.5

range_constraint :;= range range

range ::= simple_expression .. simple_expression

3.5.1

enumerationjype_definition ::=

(enumerationJiteral [, enumerationjiteral])

enumerationJiteral ::= identifier
|
characterJiteral

3.5.4

integer_type_definition ::= range_constraint

3.1 3.5.6

declaration ::=

object_declaration
|
number_declaration real_type_defmition accuracy_constraint

I
type_declaration

|
subtype_declaration

|
subprogram_declaration

|
package_declaration accuracyconstraint ::=

|
task_declaration

|
renaming_declaration

|
exception_declaration floating_point_constraint

|
fixed_point_constraint

3.5.7

3.2
floating_point_constraint ;:=

object_declaration ::= digits sfaf/c_simple_expression [range_constraint]

identifierjist : [constant] subtypeJndication [:= expression];

|
identifierjist : [constant] array_type_definition [:= expression];

3.5.9

number_declaration ::=

identifierjist : constant := literat e*pression; fixed_point_constraint

delta sfaf/c_simple_expression [range_constraint]

identifierjist identifier [, identifier]

F - 1

MIL-STD-1815
10 December 1980 Ada Reference Manual

3.6

array_type_definition

array (index |, index}) of co/7?ponenf_subtypeJndication

|
array index_constraint of co/77pone/7f_subtypeJndication

index ::= type_mark range <>

index_constraint ::= (discrete_range 1, discrete_range})

discrete_range type_mark [range_constraint]
|
range

4.1

name identifier

|
indexed_component

|
slice

| selected_component
|
attribute

j
function_call

j
operator_symbol

4 . 1.1

indexed_component ::= name(expression {, expression})

3.7

record_type_definition ::=

record

componentjist
end record

componentjist ::=

I component_declaration} [variant_part]
|

null;

component_declaration ;:=

identifierJist : subtypeJndication [:= expression];

|
identifierJist : array_type_deflnition [:= expression];

4 . 1.2

slice ::= name (discrete_range)

4 . 1.3

selected_component ;:=

name.identifier
|
name.all

|
name.operator_symbol

4 . 1.4

attribute name'identifier

3 . 7.1

discriminant_part ::=

(discriminant_declaration {; discriminant_declaration})

discriminant_declaration

identifierJist : subtypeJndication [:= expression]

3 . 7.2

discriminant_constraint ::=

(discriminant_specification {, discriminant_specification})

discriminant_specification ::=

fdiscriminant_r\ame (| discriminant

_

name} =>] expression

3 . 7.3

variant-part

case discriminant name it

Iwhen choice "f| choice} =>
componentjist}

end case;

choice ::= simple_expression
J
discrete_range

|
others

3.8

accessJype_definition access subtypejndication

incompleteJype_declaration ::= type identifier [discriminant_part];

4.2

literal ::=

numericjiteral
|
enumerationjiteral

|
character_string

|
null

4.3

aggregate

(component-association {, component_association})

component_association ::=

(choice (| choice} =>] expression

4.4

expression ::=

relation (and relation]

|
relation (or relation}

|
relation (xor relation}

|
relation (and then relation}

|
relation (or else relation}

relation ::=

simple_expression [relationaLoperator simple_expression]

I
simple_expression [not] in range

|
simple_expression [not] in subtypejndication

simple_expression ::= (unary_operator] term (adding_operator term]

term ;:= factor (multiplying_operator factor}

factor primary (** primary]

3.9

declarative_part

(declarativeJtem
} (representation_specification

} (program_component

}

declarativejtem ::= declaration
[
use_clause

program_component ::= body
| package_declaration

| task_declaration
|
body_stub

body subprogramjbody
| packageJbody

|
taskJbody

primary

literal
|
aggregate

|
name

|
allocator

}
function_call

I
type_conversion

|
qualified_expression

|
(expression)

4.5

logical_operator

relational_operator

::= and
|
or

1
/=

|
xor

1 <

adding_operator ::= +
1

-
1
&

unary_operator +
1

-
(
not

multiplying_operator *
1 / |

mod

exponentiating_operator **

<=
I > I

>=

rem

E - 2

Syntax Summary

MIL-STD-1815

10 December 1980

4.6

type_conversion ::= type_mark (expression)

4.7

qualified_expression ::=

type_mark'(expression)
|
type_mark'aggregate

4.8

allocator

new type_mark ((expression)!

|
new type_mark aggregate

j
new type_mark discriminant_constraint

j
new type_mark index_constraint

iteration_clause ::=

for loop_parameter in (reverse] discrete_range

|
while condition

loop_parameter ::= identifier

5.6

block ::=

[6/oc/r_identifier:]

[declare

declarative_part]

begin

sequence_of_statements

[exception

[exception_handler|]

end [6/oc*jdentifier];

5.1

sequence_of_statements ::= statement [statement]

statement ::=

[
label] simple_statement

|
(label) compound_statement

simple_statement ::= nulLstatement

|
assignment_statement

j
return_statement

j
procedure_call

j
delay_statement

raise_statement

|
exit_statement

goto_statement

entry_call

abort_statement

code_statement

compound^statement ::=

if_statement

|
loop-statement

j
accept_statement

label ::= <<identifier>>

case_statement

block

select_statement

nulLstatement ::= null;

5.2

assignment_statement ::=

variable name := expression;

5.7

exit_statement ::=

exit [/oop name] [when condition];

5.8

return_statement return [expression];

5.9

goto_statement goto label_name:

subprogram_declaration :;= subprogram_specification;

|
generic_subprogram_declaration

j
generic-subprogram—instantiation

subprogram_specification ::=

procedure identifier [formal_part]

|
function designator (formaLpart] return subtypeJndication

designator identifier
|
operator_symbol

operator_symbol ::= character_string

5.3

if_statement

if condition then

sequence_of_statements

I
elsif condition then

sequence_of_statements]

[else

sequence_of_statements]

end if;

condition ::= 6oo/ean_expression

5.4

case_statement ::=

case expression is

[when choice (| choice) => sequence_of_statements]

end case;

formaLpart ::=

(
parameter_declaration (; parameter-declaration})

parameter_declaration :;=

identifierjist : mode subtypeJndication (:= expression]

mode := [in]
|
out

|
in out

6.3

subprogram-body ::=

subprogram_specification is

declarative_part

begin

sequence_of—Statements

[exception

I
exception-handler]]

end [designator];

5.5

loop_statement ::=

[/oopjdentifier:] [
iteration_clause] basicJoop [

/oopjdentifier];

basicjoop ::=

loop

sequence_of_statements

end loop

6.4

procedure_call ::=

procedure name [actual—parameter_part];

function-call

functionjname actual_parameter_part |
function name 0

actual_parameter_part ::=

(parameter-association [, parameter—association])

E - 3

MIL-STD-1815
10 December 1980

Ada Reference Manual

parameter_association ::=

f formaLparameter =>] actuaLparameter

formaLparameter identifier

actuaLparameter ::= expression

7.1

package_declaration ::= package_specification;

I generic_package_declaration

I generic_package_instantiation

package_specification

package identifier is

|declarative_item]

f private

(declarativeJtem
|

(representation_specification }]

end [identifier)

package_body ::=

package body identifier is

declarative_part

f begin

sequence_of_statements
f exception

(exception_handler)]]

end [identifier];

7.4

private_type_definition ::= [limited] privet©

8.4

use_clause use package_narc\e {, package_name};

8.5

renaming_declaration

identifier : type_mark renames name;
|

identifier : exception renames name;
I package identifier renames name;
I

task identifier renames name;
I subprogram_3pecification renames name;

9.1

task_declaration ::= task_specification

task_specification ::=

task [type] identifier [is

[entry_deciaration]

I representation_specification

}

end [identifier]];

task_body

task body identifier is

[declarative_part]

begin

sequence_of_statements

[exception

[exception_handler]]

end [identifier];

9.5

entry_declaration ;:=

entry identifier [(discrete_range)] [formal_part];

entry_call e/7fry_name [actuaLparameter_43art];

accept_statement ::=

accept entry_c\avc\Q [formaLpart] [do

sequence_of_statements
end [identifier]];

9.6

delay_statement delay simple_expression;

97

select_statement selective_wait

|conditional_entry_call
| timed_entry_call

9.7.1

selective_wait

select

[when condition =>]
select_alternative

I or [when condition =>]
selecLalternativej

[else

sequence_of_statements]
end select;

selecLalternative

accept_statement [sequence_of_statements]
| delay_statement [sequence_of_statements]
| terminate;

9.7.2

conditional_entry_call

select

entry_call [sequence_of_statements]
else

sequence_of_statements
end select;

9.7.3

timed_entry_call

select

entry_call [sequence_of_statements]
or

delay_statement [sequence_of_statements]
end select;

9.10

abort_statement abort rasA_name |, fas)t_nameL

10.1

compilation |compilation_unit]

compilation_unit

context_specification subprogram_declaration
I contexLspecification subprogram_body
I context_specification package_declaration
I context_specification packagejDody
I context_specification subunit

context_specification ::= |with_clause [use_clause]|

with_clause ::= with unit_name [, fvn/’Lnamel;

E - 4

Syntax Summary

MIL-STD-1815

10 December 1980

10.2

subunit

separate (unitjname) body

body_stub ::=

subprogram_specification is separate;

|
package body identifier is separate;

|
task body identifier is separate;

11.1

exception_declaration ::= identifierjist : exception;

11.2

exception_handler ::=

when exception_choice {| exception_choice} =>
sequence_of_statements

exception__choice ::= exceptionjname
|
others

11.3

raise_statement raise [exception_name];

12.1

generic_subprogram_declaration ::=

generic_part subprogram_specification;

generic_package_declaration ::=

generic_part package_specification;

generic_part ::= generic jgeneric_formal_parameter}

genericJormaLparameter ::=

parameter_declaration;

|
type identifier [discriminant_part] is generic_type_definition;

j
with subprogram_specification [is name];

|

with subprogram_specification is <>;

generic_type_definition ::=

(<>) |
range <> |

delta <> |
digits <>

|
array_type_definition

|
access_type_definition

j
private_type_definition

13.2

length_specification ::= for attribute us© expression;

13.3

enumeration_type_representation ::= for fype_name use aggregate;

13.4

record_type_representation ::=

for type_r\ame us©

record [alignment_clause;]

\component_name location;}

end record;

location ::= at sfef/c_simple_expression range range

alignment_clause ::= at mod sfsf/c_simple_expression

13.5

address_specification ::= for name use at sfef/c_simple_expression;

13.8

code_statement ::= qualified_expression;

12.3

generic_subprogram_instantiation ::=

procedure identifier is genericjnstantiation;

|
function designator is genericjnstantiation;

generic_packageJnstantiation ::=

package identifier is genericjnstantiation;

genericjnstantiation ;;=

new name [(generic_association {, generic_association })]

generic_association

[formaLparameter =>] generic_actual_parameter

generic_actual_parameter ::=

expression
|
subprogram_name

|
subtypeJndication

13.1

representation_specification ::=

length_specification
|
enumeration_type_representation

|
record_type_representation

|
address_specification

E - 5

MIL-STD-1815

10 December 1980 Ada Reference Manual

Syntax Cross Reference

In the list given below each syntactic category is followed by the section and page numbers where it is
defined. For example:

adding_operator 4.5 4_1

0

In addition, each syntactic category is followed by the names of other categories in whose definition it

appears. For example, adding_operator appears in the definition of simple_expression:

adding_operator 4.5 4-10
simple_expression 4.4 4-9

An ellipsis (...) is used when the syntactic category is not defined by a syntax rule. For example:

lower_case_letter

All uses of parentheses are combined in the term "()". The italicized prefixes used with some terms have
been deleted here.

abort_statement 9.10 9-14
simple_statement 5.1 5-1

accept_statement 9.5 9-6
compound_statement 5.1 5-1

select_alternative 9.7.1 9-10

access_type_definition 3.8 3-29
generic_type_definition 12.1 12-1
type_definition 3.3 3-5

accuracy_constraint 3.5.6 3-13
constraint 3.3 3-5
real_type_definition 3.5.6 3-13

actuaLparameter 6.4 6-5
parameter_association 6.4 6-5

actual_parameter_part 6.4 6-5
entry_call 9.5 9-6
function_call 6.4 6-5
procedure_call 6.4 6-5

adding_operator 4.5 4-10
simple_expression 4.4 4-9

address_specification 13.5 13-6
representation_specification 13.1 13-1

aggregate 4.3 4-6
allocator 4.8 4-22
enumeration_type_representation 13.3 13-4
primary 4.4 4-9
qualified_expression 4.7 4-21

alignment_clause 13.4 13-5
record_type_representation 13.4 13-5

allocator 4.8 4-22
primary 4.4 4-9

argument 2.8 2-6
pragma 2.8 2-6

array_type_definition 3.6 3-18
component_declaration 3.7 3-23
generic_type_definition 12.1 12-1
object_declaration 3.2 3-2
type_definition 3.3 3-5

assignment_statement 5.2 5-2
simple_statement 5.1 5-1

attribute 4.1.4 4-5
length_specification 13.2 13-2
name 4.1 4-1

base 2.4.1 2-4
based_number 2.4.1 2-4

based_integer 2.4.1 2-4
based_number 2.4.1 2-4

based_number 2.4.1 2-4
numericJiteral 2.4 2-3

basic_loop 5.5 5-6
loop_statement 5.5 5-6

block 5.6 5-7
compound_statement 5.1 5-1

body 3.9 3-31
program_component 3.9 3-31
subunit 10.2 10-6

body_stub 10.2 10-6
program_component 3.9 3-31

case_statement 5.4 5-5
compound_statement 5.1 5-1

character

character_string 2.6 2-5

characterjiteral

enumeration_literal 3.5.1 3-9

E - 6

MIL-STD-1815

Syntax Summary 10 December 1980

character_string 2.6 2-5

literal 4.2 4-6

operator_symbol 6.1 6-1

choice 3.7.3 3-28

case_statement 5.4 5-5

component_association 4.3 4-6

variant_part 3.7.3 3-28

code_statement 13.8 13-11

simple_statement 5.1 5-1

compilation 10.1 10-1

compilation_unit 10.1 10-1

compilation 10.1 10-1

component_association 4.3 4-6

aggregate 4.3 4-6

component_declaration 3.7 3-23

component_list 3.7 3-23

component_list 3.7 3-23

record_type_definition 3.7 3-23

variant_part 3.7.3 3-28

compound_statement 5.1 5-1

statement 5.1 5-1

condition 5.3 5-4

exit_statement 5.7 5-8

if_statement 5.3 5-4

iteration_clause 5.5 5-6

selective_wait 9.7.1 9-9

conditional_entry_call 9.7.2 9-11

select_statement 9.7 9-9

constraint 3.3 3-5

subtype_indication 3.3 3-5

context_specification 10.1 10-1

compilation_unit 10.1 10-1

decimal_number 2.4 2-3

numericjiteral 2.4 2-3

declaration 3.1 3-1

declarative_item 3.9 3-31

declarative_item 3.9 3-31

declarative_part 3.9 3-31

package_specification 7.1 7-1

declarative_part 3.9 3-31

block 5.6 5-7

package_body 7.1 7-1

subprogram_body 6.3 6-4

taskJbody 9.1 9-1

delay_statement 9.6 9-8

select_altemative 9.7.1 9-10

simp!e_statement 5.1 5-1

timed_entry_call 9.7.3 9-12

derived_type_definition 3.4 3-6

type_definition 3.3 3-5

designator 6.1 6-1

generic_subprogram_instantiation 12.3 12-6

subprogramJbody 6.3 6-4

subprogram_specification 6.1 6-1

digit ...

extended_digit 2.4.1 2-4

integer 2.4 2-3

letter_or_digit 2.3 2-2

discrete_range 3.6 3-18

choice 3.7.3 3-28

entry_declaration 9.5 9-6

index_constraint 3.6 3-18

iteration_clause 5.5 5-6

slice 4.1.2 4-2

discriminant_constraint 3.7.2 3-26

allocator 4.8 4-22

constraint 3.3 3-5

discriminant_declaration 3.7.1 3-25

discriminant_part 3.7.1 3-25

discriminant_part 3.7.1 3-25

generic_formal_parameter 12.1 12-1

incomplete_type_declaration 3.8 3-29

type_declaration 3.3 3-5

discriminant_specification 3.7.2 3-26

discriminant_constraint 3.7.2 3-26

entry_call 9.5 9-6

conditional_entry_call 9.7.2 9-1

1

simple_statement 5.1 5-1

timed_entry_call 9.7.3 9-12

entry_declaration 9.5 9-6

task_specification 9.1 9-1

enumerationjiteral 3.5.1 3-9

enumeration_type_definition 3.5.1 3-9

literal 4.2 4-6

enumeration_type_definition 3.5.1 3-9

type_definition 3.3 3-5

enumeration_type_representation 13.3 13-4

representation_specification 13.1 13-1

exception_choice 11.2 11-2

exception_handler 11.2 1 1-2

exception_declaration 11.1 11-1

declaration 3.1 3-1

exception_handler 11.2 11-2

block 5.6 5-7

package_body 7.1 7-1

subprogramjbody 6.3 6-4

task_body 9.1 9-1

exit_statement 5.7 5-8

simple_statement 5.1 5-1

exponent 2.4 2-3

based_number 2.4.1 2-4

decimaLnumber 2.4 2-3

exponentiating_operator 4.5 4-10

expression 4.4 4-9

actual-parameter 6.4 6-5

allocator 4.8 4-22

argument 2.8 2-6

assignment-statement 5.2 5-2

case_statement 5.4 5-5

component-association 4.3 4-6

component—declaration 3.7 3-23

condition 5.3 5-4

discriminant-declaration 3.7.1 3-25

discriminant—specification 3.7.2 3-26

generic—actual-parameter 12.3 12-6

indexed-component 4.1.1 4-2

length-specification 13.2 13-2

number-declaration 3.2 3-2

object-declaration 3.2 3-2

parameter-declaration 6.1 6-1

E - 7

MIL-STD-1815

10 December 1980

primary 4.4 4-9

qualifiecLexprassion 4.7 4-21
return_statement 5.8 5-9

type_conversion 4.6 4-20

extended_digit 2.4.1 2-4
basedjnteger 2.4.1 2-4

factor 4.4 4-9
term 4.4 4-9

fixed_point_constraint 3.5.9 3-16
accuracy_constraint 3.5.6 3-13

floating_point_constraint 3.5.7 3-13
accuracy_constraint 3.5.6 3-13

formaLparameter 6.4 6-5

generic_association 12.3 12-6

parameter_association 6.4 6-5

formaLpart 6.1 6-1

accept_statement 9.5 9-6
entry_declaration 9.5 9-6
subprogram_specification 6.1 6-1

function_call 6.4 6-5
name 4.1 4-1

primary 4.4 4-9

generic_actual_parameter 12.3 12-6
generic_association 12.3 12-6

generic_association 12.3 12-6
genericjnstantiation 12.3 12-6

generic_formal_parameter 12.1 12-1
generic_part 12.1 12-1

genericjnstantiation 12.3 12-6
generic_packageJnstantiation 12.3 12-6
generic_subprogramJnstantiation 12.3 12-6

generic_package_declaration 12.1 12-1
package_declaration 7.1 7-1

generic_packageJnstantiation 12.3 12-6
package_declaration 7.1 7-1

generic_part 12.1 12-1
generic_package_declaration 12.1 12-1
generic_subprogram_declaration 12.1 12-1

generic_subprogram_declaration 12.1 12-1
subprogram_declaration 6.1 6-1

generic_subprogramJnstantiation 12.3 12-6
subprogram_declaration 6.1 6-1

generic_type_definition 12.1 12-1
generic_formal_parameter 12.1 12-1

goto_statement 5.9 5-9
simple_statement 5.1 5-1

identifier 2.3 2-2
accept_statement 9.5 9-6
argument 2.8 2-6
attribute 4.1.4 4-5
block 5.6 5-7
body_stub 10.2 10-6
designator 6.1 6-1

entry_declaration 9.5 9-6
enumerationJiteral 3.5.1 3-9
formaLparameter 6.4 6-5
genericJormaLparameter 12.1 12-1
generic_packageJnstantiation 12.3 12-6
generic_subprogramJnstantiation 12.3 12-6
identifierjist 3.2 3-2
incomplete_type_declaration 3.8 3-29

Ada Reference Manual

label 5.1 5-1
loop_parameter 5.5 5-6
loop_statement 5.5 5-6
name 4.1 4-1
package_body 7.1 7-1
package_specification 7.1 7-1
pragma 2.8 2-6
renaming_declaration 8.5 8-9
selected_component 4.1.3 4-3
subprogram_specification 6.1 6-1
subtype_declaration 3.3 3-5
task_body 9.1 9-1
task_specification 9.1 9-1
type_declaration 3.3 3-5

identifierjist 3.2 3-2
component_declaration 3.7 3-23
discriminant_declaration 3.7.1 3-25
exception_declaration 11.1 11-1
number_declaration 3.2 3-2
object_declaration 3.2 3-2
parameter_declaration 6.1 6-1

if_statement 5.3 5-4
compound_statement 5.1 5-1

incomplete_type_declaration 3.8 3-29
type_declaration 3.3 3-5

index 3.6 3-18
array_type_definition 3.6 3-18

index__constraint 3.6 3-18
allocator 4.8 4-22
arrayJype_definition 3.6 3-18
constraint 3.3 3-5

indexed_component 4.1.1 4-2
name 4.1 4-1

integer 2.4 2-3
base 2.4.1 2-4
decimaLnumber 2.4 2-3
exponent 2.4 2-3

integer_type_definition 3.5.4 3-10
type_definition 3.3 3-5

iteration_clause 5.5 5-6
loop_statement 5.5 5-6

label 5.1 5-1

statement 5.1 5-1

length_specification 13.2 13-2
representation_specification 13.1 13-1

letter 2.3 2-2
extended_digit 2.4.1 2-4
identifier 2.3 2-2
letter_or_digit 2.3 2-2

letter__or_digit 2.3 2-2
identifier 2.3 2-2

literal 4.2 4-6
primary 4.4 4-9

location 13.4 13-5
recordJype_representation 13.4 13-5

logicaLoperator 4.5 4-10

loop_parameter 5.5 5-6
iteration_clause 5.5 5-6

loop_statement 5.5 5-6
compound_statement 5.1 5-1

E - 8

Syntax Summary

lower_case_letter

letter 2.3 2-2

mode 6.1 6-1

parameter_declaration 6.1 6-1

multiplying_operator 4.5 4-10

term 4.4 4-9

name 4.1 4-1

abort_statement 9.10 9-14

accept_statement 9.5 9-6

address_speciflcatlon 13.5 13-6

argument 2.8 2-6

assignment-statement 5.2 5-2

attribute 4.1.4 4-5

discriminant__specification 3.7.2 3-26

entry_call 9.5 9-6

enumeration_type_representation 13.3 13-4

exception_choice 11.2 11-2

exit_statement 5.7 5-8

function_call 6.4 6-5

generic_actual_parameter 12.3 12-6

generic_formal_parameter 12.1 12-1

generic...instantiation 12.3 12-6

goto^statement 5.9 5-9

indexed_component 4.1.1 4-2

primary 4.4 4-9

procedure_call 6.4 6-5

raise_statement 11.3 11-3

record_type_representation 13.4 13-5

renaming_declaration 8.5 8-9

selected_component 4.1.3 4-3

slice 4.1.2 4-2

subunit 10.2 10-6

type_mark 3.3 3-5

use_clause 8.4 8-6

variant_part 3.7.3 3-28

with_clause 10.1 10-1

nulLstatement 5.1 5-1

simple_statement 5.1 5-1

number_declaration 3.2 3-2

declaration 3.1 3-1

numericJiteral 2.4 2-3

literal 4.2 4-6

object-declaration 3.2 3-2

declaration 3.1 3-1

operator_symbol 6.1 6-1

designator 6.1 6-1

name 4.1 4-1

selected_component 4.1.3 4-3

package-body 7.1 7-1

body 3.9 3-31

compilation-unit 10.1 10-1

package-declaration 7.1 7-1

compilation-unit 10.1 10-1

declaration 3.1 3-1

program-component 3.9 3-31

package-specification 7.1 7-1

generic-package-declaration 12.1 12-1

package-declaration 7.1 7-1

parameter-association 6.4 6-5

actual_parameter_part 6.4 6-5

parameter-declaration 6.1 6-1

formal-part 6.1 6-1

generic-formal-parameter 12.1 12-1

pragma 2.8 2-6

MIL-STD-1815

10 December 1980

primary 4.4 4-9

factor 4.4 4-9

private_type_definition 7.4 7-4

generic_type_definition 12.1 12-1

type_definition 3.3 3-5

procedure_call 6.4 6-5

simple_statement 5.1 5-1

program_component 3.9 3-31

declarative_part 3.9 3-31

qualified_expression 4.7 4-21

code_statement 13.8 13-11

primary 4.4 4-9

raise_statement 11.3 11-3

simple_statement 5.1 5-1

range 3.5 3-8

discrete_range 3.6 3-18

location 13.4 13-5

range_constraint 3.5 3-8

relation 4.4 4-9

range_constraint 3.5 3-8

constraint 3.3 3-5

discrete_range 3.6 3-18

fixed_point_constraint 3.5.9 3-16

floating_point_constraint 3.5.7 3-13

integer_type_definition 3.5.4 3-10

real_type_definition 3.5.6 3-13

type_definition 3.3 3-5

record_type_definition 3.7 3-23

type_definition 3.3 3-5

record_type_representation 13.4 13-5

represents tion_specification 13.1 13-1

relation 4.4 4-9

expression 4.4 4-9

relationaLoperator 4.5 4-10

relation 4.4 4-9

renaming_declaration 8.5 8-9

declaration 3.1 3-1

representation_specification 13.1 13-1

declarative_part 3.9 3-31

package_specification 7.1 7-1

task_specification 9.1 9-1

return_statement 5.8 5-9

simple_statement 5.1 5-1

select_alternative 9.7.1 9-10

selective_wait 9.7.1 9-9

select_statement 9.7 9-9

compound_statement 5.1 5-1

selected_component 4.1.3 4-3

name 4.1 4-1

selective_wait 9.7.1 9-9

select-statement 9.7 9-9

E - 9

MIL-STD-1815

10 December 1980 Ada Reference Manual

sequence_of_statements 5.1 5-1 term 4.4 4-9
accept_statement 9.5 9-6 simple_expression 4.4 4-9
basicJoop 5.5 5-6

block 5.6 5-7 timed_entry_call 9.7.3 9-12
case_statement 5.4 5-5 select_statement 9.7 9-9
conditional_entry_call 9.7.2 9-11

exception_handler 11.2 11-2 type_conversion 4.6 4-20
if_statement 5.3 5-4 primary 4.4 4-9
package_body 7.1 7-1

select_alternative 9.7.1 9-10 type_declaration 3.3 3-5
selective_wait 9.7.1 9-9 declaration 3.1 3-1

subprogram_body 6.3 6-4

task_body 9.1 9-1 type_definition 3.3 3-5
timed_entry_call 9.7.3 9-12 type_declaration 3.3 3-5

simple_expresslon 4.4 4-9 type_mark 3.3 3-5
address_specification 13.5 13-6 allocator 4.8 4-22
alignmentxlause 13.4 13-5 discrete_range 3.6 3-18
choice 3.7.3 3-28 index 3.6 3-18
delay_statement 9.6 9-8 qualified_expression 4.7 4-21
fixed_point_constraint 3.5.9 3-16 renaming_declaration 8.5 8-9
floating_point_constraint 3.5.7 3-13 subtype_indication 3.3 3-5
location 13.4 13-5 type_conversion 4.6 4-20
range 3.5 3-8

relation 4.4 4-9 unary_operator 4.5 4-10
simple_expression 4.4 4-9

simple_statement 5.1 5-1

statement 5.1 5-1 underscore

based_integer 2.4.1 2-4
slice 4.1.2 4-2 identifier 2.3 2-2

name 4.1 4-1 integer 2.4 2-3

statement 5.1 5-1 upper_case_letter
sequence_of_statements 5.1 5-1 letter 2.3 2-2

subprogram_body 6.3 6-4 use_clause 8.4 8-6
body 3.9 3-31 context_specification 10.1 10-1
compilation_unit 10.1 10-1 declarative_Jtem 3.9 3-31

subprogram_declaration 6.1 6-1 variant_part 3.7.3 3-28
compilation_unit 10.1 10-1 componenUist 3.7 3-23
declaration 3.1 3-1

with_clause 10.1 10-1
subprogram_specification 6.1 6-1 context_specification 10.1 10-1

body_stub 10.2 10-6
generic_formal_parameter 12.1 12-1 "

... ...

generic_subprogram_declaration 12.1 12-1 character_string 2.6 2-5
renaming_declaration 8.5 8-9

subprogram_body 6.3 6-4 #

subprogram_declaration 6.1 6-1 based_number 2.4.1 2-4

subtype_declaration 3.3 3-5 &
declaration 3.1 3-1 adding_operator 4.5 4-10

subtypeJndication 3.3 3-5
access_type_definition 3.8 3-29 attribute 4.1.4 4-5
array_type_definition 3.6 3-18 qualified_expression 4.7 4-21
component_declaration 3.7 3-23
derived_type_definition 3.4 3-6

()

discriminant_declaration 3.7.1 3-25 actual_parameter_part 6.4 6-5
generic_actual_parameter 12.3 12-6 aggregate 4.3 4-6
object-declaration 3.2 3-2 allocator 4.8 4-22
parameter_declaration 6.1 6-1 array_type_definition 3.6 3-18
relation 4.4 4-9 discriminant_constraint 3.7.2 3-26
subprogram_specification 6.1 6-1 discriminant_part 3.7.1 3-25
subtype_declaration 3.3 3-5 entry_call 9.5 9-6

entry_declaration 9.5 9-6
subunit 10.2 10-6 enumeration_type_definition 3.5.1 3-9

compilation_unit 10.1 10-1 formaLpart 6.1 6-1

function_call 6.4 6-5
task_body 9.1 9-1 generic_instantiation 12.3 12-6

body 3.9 3-31 generic_type_definition 12.1 12-1

index_constraint 3.6 3-18
task_declaration 9.1 9-1 indexed_component 4.1.1 4-2

declaration 3.1 3-1 pragma 2.8 2-6
program_component 3.9 3-31 primary 4.4 4-9

qualified_expression 4.7 4-21
task_specification 9.1 9-1 slice 4.1.2 4-2

task_declaration 9.1 9-1 subunit 10.2 10-6

type_conversion 4.6 4-20

E - 10

Syntax Summary

MIL-STD-1815
10 December 1980

entry_call 9.5 9-6

multiplying_operator 4.5 4-10 entry_declaration 9.5 9-6

enumeration_type_representation 13.3 13-4

... ... exception_declaration 11.1 11-1

exponentiating_operator 4.5 4-10 exit_statement 5.7 5-8

factor 4.4 4-9 formal_part 6.1 6-1

generic_formal_parameter 12.1 12-1

generic_package_declaration 12.1 12-1

adding_operator 4.5 4-10 generic_package_instantiation 12.3 12-6

exponent 2.4 2-3 generic_subprogram_declaration 12.1 12-1

unary_operator 4.5 4-10 generic_subprogramJnstantiation 12.3 12-6

goto_statement 5.9 5-9

if_statement 5.3 5-4

abort_statement 9.10 9-14 incomplete_type_declaration 3.8 3-29

actual_parameter_part 6.4 6-5 length_specification 13.2 13-2

aggregate 4.3 4-6 loop_statement 5.5 5-6

array_type_definition 3.6 3-18 nulLstatement 5.1 5-1

discriminant_constraint 3.7.2 3-26 number_declaration 3.2 3-2

enumeration_type_definition 3.5.1 3-9 object_declaration 3.2 3-2

generic_instantiation 12.3 12-6 packagejDody 7.1 7-1

identifier list 3.2 3-2 package_declaration 7.1 7-1

index_constraint 3.6 3-18 pragma 2.8 2-6

indexed_component 4.1.1 4-2 procedure_call 6.4 6-5

pragma 2.8 2-6 raise_statement 11.3 11-3

use_clause 8.4 8-6 record_type_representation 13.4 13-5

with_clause 10.1 10-1 renaming_declaration 8.5 8-9

return_statement 5.8 5-9

select-alternative 9.7.1 9-10

adding_operator 4.5 4-10 • selective_wait 9.7.1 9-9

exponent 2.4 2-3 subprogramjDody 6.3 6-4

unary_operator 4.5 4-10 subprogram_declaration 6.1 6-1

subtype_declaration 3.3 3-5

task_body 9.1 9-1

based_number 2.4.1 2-4 task_specification 9.1 9-1

decimal_number 2.4 2-3 timed_entry_call 9.7.3 9-12

selected_component 4.1.3 4-3 type_declaration 3.3 3-5

use_clause 8.4 8-6

... variant-part 3.7.3 3-28

range 3.5 3-8 with_clause 10.1 10-1

multiplying_operator 4.5 4-10
<

relationaLoperator 4.5 4-10

<<

relationaLoperator 4.5 4-10 label 5.1 5-1

block 5.6 5-7

<=
relationaLoperator 4.5 4-10

componenLdeclaration 3.7 3-23

discriminant-declaration 3.7.1 3-25 <> ...

exception_declaration 11.1 11-1 generic_formal_parameter 12.1 12-1

loop_statement 5.5 5-6 generic_type_definition 12.1 12-1

number_declaration 3.2 3-2 index 3.6 3-18

object-declaration 3.2 3-2

parameter_declaration 6.1 6-1 =

renaming_declaration 8.5 8-9 relationaLoperator 4.5 4-10

assignment_statement 5.2 5-2

= >
argument 2.8 2-6

component-declaration 3.7 3-23 case_statement 5.4 5-5

discriminant-declaration 3.7.1 3-25 component_association 4.3 4-6

number_declaration 3.2 3-2 discriminanLspecification 3.7.2 3-26

object-declaration 3.2 3-2 exception_handler 11.2 11-2

parameter_declaration 6.1 6-1 generic_association 12.3 12-6

parameter_association 6.4 6-5

selective_wait 9.7.1 9-9

abort_statement 9.10 9-14 varianLpart 3.7.3 3-28

accept_statement 9.5 9-6

address_specification 13.5 13-6 >

assignmentjstatement 5.2 5-2 relationaLoperator 4.5 4-10

block 5.6 5-7

body_stub 10.2 10-6 >= ...

case_statement 5.4 5-5 relationaLoperator 4.5 4-10

code_statement 13.8 13-11

component-declaration 3.7 3-23 >>

componenLlist 3.7 3-23 label 5.1 5-1

conditional_entry_call 9.7.2 9-11

delay_statement 9.6 9-8 E ...

discriminant_part 3.7.1 3-25 exponent 2.4 2-3

E - 11

MIL-STD-1815

10 December 1980 Ada Reference Manual

abort

abort_statement 9.10 9-14

accept

accept_statement 9.5 9-6

access

access_type_definition 3.8 3-29

all

selected_component 4.1.3 4-3

and
expression 4.4 4-9
logicaLoperator 4.5 4-10

array

array_type_definition 3.6 3-18

at

address_specification 13.5 13-6
alignment_clause 13.4 13-5
location 13.4 13-5

begin

block 5.6 5-7
package_body 7.1 7-1
subprogramJbody 6.3 6-4
task_body 9.1 9-1

body
body_stub 10.2 10-6
package_body 7.1 7-1
task_body 9.1 9-1

case

case_statement 5.4 5-5
variant_part 3.7.3 3-28

constant

number_declaration 3.2 3-2
object_declaration 3.2 3-2

declare

block 5.6 5-7

delay

delay_statement 9.6 9-8

delta

fixed_point_constraint 3.5.9 3-16
generic_type_definition 12.1 12-1

digits

floating_point_constraint 3.5.7 3-13
generic_type_definition 12.1 12-1

do

accept_statement 9.5 9-6

else

conditional_entry_call 9.7.2 9-11
expression 4.4 4-9
if_statement 5.3 5-4
selective_wait 9.7.1 9-9

elsif

if_statement 5.3 5-4

end

accept_statement 9.5 9-6
basicJoop 5.5 5-6
block 5.6 5-7
case_statement 5.4 5-5
conditional_entry_call 9.7.2 9-11
if_statement 5.3 5-4
package_body 7.1 7-1

package_specification 7.1 7-1
record_type_definition 3.7 3-23
record_type_representation 13.4 13-5
selective_wait 9.7.1 9-9
subprogramjjody 6.3 6-4
task_body 9.1 9-1
task_specification 9.1 9-1

timed_entry_call 9.7.3 9-12
variant_part 3.7.3 3-28

entry

entry_declaration 9.5 9-6

exception

block 5.6 5-7
exception_declaration 11.1 11-1
package_body 7.1 7-1

renaming_declaration 8.5 8-9
subprogramJbody 6.3 6-4
task_body 9.1 9-1

exit

exit_statement 5.7 5-8

for

address_specification 13.5 13-6
enumeration_type_representation 13.3 13-4
iteration_clause 5.5 5-6
length_specification 13.2 13-2
record_type_representation 13.4 13-5

function

generic_subprogramJnstantiation 12.3 12-6
subprogram_specification 6.1 6-1

generic

generic_part 12.1 12-1

goto

goto_statement 5.9 5-9

if

if_statement 5.3 5-4

in

iteration_clause 5.5 5-6
mode 6.1 6-1
relation 4.4 4-9

is

body_stub 10.2 10-6
case_statement 5.4 5-5
genericJormaLparameter 12.1 12-1
generic_package_instantiation 12.3 12-6
generic_subprogram_instantiation 12.3 12-6
package_body 7.1 7-1

package_specification 7.1 7-1
subprogramJaody 6.3 6-4
subtype_declaration 3.3 3-5
task_body 9.1 9-1
task._specification 9.1 9-1
type_declaration 3.3 3-5
variant_part 3.7.3 3-28

limited

private_type_definition 7.4 7-4

loop

basicJoop 5.5 5-6

E - 12

Syntax Summary
MIL-STD-1815

10 December 1980

mod
alignment-clause 13.4 13-5

multiplying_operator 4.5 4-10

new
allocator 4.8 4-22

derived—type_definition 3.4 3-6

generic-instantiation 12.3 12-6

not

relation 4.4 4-9

unary_operator 4.5 4-10

null ...

component-list 3.7 3-23

literal 4.2 4-6

null-statement 5.1 5-1

of ...

array_type_definition 3.6 3-18

or

expression 4.4 4-9

logical-operator 4.5 4-10

selective—wait 9.7.1 9-9

timed_entry-call 9.7.3 9-12

others

choice 3.7.3 3-28

exception—choice 11.2 11-2

out ...

mode 6.1 6-1

package
body_stub 10.2 10-6

generic—package—instantiation 12.3 12-6

package-body 7.1 7-1

package-specification 7.1 7-1

renaming_declaration 8.5 8-9

pragma ...

pragma 2.8 2-6

private ...

package—specification 7.1 7-1

private_type_definition 7.4 7-4

procedure ...

generic_subprogram_instantiation 12.3 12-6

subprogram-specification 6.1 6-1

raise ...

raise-statement 11.3 11-3

range
generic_type_definition

index

location

range_constraint

record

record_type_definition

record_type_representation

12.1

3.6

13.4

3.5

3.7

13.4

12-1

3-18
13-5
3-8

3-23
13-5

multiplying_operator

renames
renaming_declaration

4.5

8.5

4-10

8-9

return ••• •••

return_statement 5.8 5-9

subprogram_specification 6.1 6-1

reverse

iteration_clause 5.5 5-6

select

conditional_entry_call

selective_wait

timed_entry_call

9.7.2 9-11

9.7.1 9-9

9.7.3 9-12

separate

body_stub

subunit

10.2 10-6

10.2 10-6

subtype
subtype_declaration 3.3 3-5

task

body_stub
renaming_declaration

task_body
task_specification

10.2 10-6

8.5 8-9

9.1 9-1

9.1 9-1

terminate

select_alternative 9.7.1 9-10

then

expression

if_statement

4.4 4-9

5.3 5-4

type
generic_formal_parameter

incomplete_type_declaration

task_specification

type_declaration

12.1 12-1

3.8 3-29

9.1 9-1

3.3 3-5

use
address_specification 13.5

enumeration_type_representation 1 3.3

length„specification 1 3.2

record_type_representation 13.4

use_clause 8-4

13-6
13-4

13-2

13-5
8-6

when
case_statement
exception_handler

exit_statement

selective_wait

variant_part

5.4 5-5

11.2 11-2

5.7 5-8

9.7.1 9-9

3.7.3 3-28

while

iteration_clause 5.5 5-6

with
generic_formal_parameter

with_clause

12.1 12-1

10.1 10-1

xor

expression

logicaLoperator

4.4 4-9

4.5 4-10

case_statement
component-association
discriminant-specification

exception-handler

variant-part

5.4 5-5

4.3 4-6

3.7.2 3-26

11.2 11-2

3.7.3 3-28

E 13

e

MIL-STD-1815

10 December 1980

F. Implementation Dependent Characteristics

This appendix is to be supplied in the reference manual of each Ada implementation. The Ada

language definition allows for certain machine dependences in a controlled manner. No machine

dependent syntax or semantic extensions or restrictions are allowed. The only allowed implemen-

tation dependences correspond to implementation dependent pragmas and attributes, certain

machine dependent values and conventions as mentioned in chapter 13, and certain allowed

restrictions on representation specifications.

The appendix F for a given implementation must list in particular:

(1) The form, allowed places, and effect of every implementation dependent pragma.

(2) The name and the type of every implementation dependent attribute.

(3) The specification of the package SYSTEM.

(4) the list of all restrictions on representation specifications (see 13.1)

(5) The conventions used for any system generated name denoting system dependent compo-

nents (see 13.4).

(6) The interpretation of expressions that appear in address specifications, including those for

interrupts, (see 13.5).

(7) Any restriction on unchecked conversions (see 13.10.2).

F - 1

Index

MIL-STD-1815

10 December 1980

Abnormal termination 9.10

Abort statement 5.1, 9.10

Abs function 4.5.7, C
Accept statement 5.1, 9.5, 9.7.1

Access object 3.8

Access type 3.8

Access type definition 3.3, 3.8, 12.1

Access value 3.8

Access_check 11.7

Accuracy constraint 3.5.6

Accuracy of operations 4.5.8

Accuracy__constraint 3.3

Actual delta 3.5.9, 13.2

Actual delta attribute 3.5.10

Actual parameter 6.4

Actual parameter association 6.4.1

Actual parameter part 6.4, 9.5

Adding operator 4.4, 4.5, 4.5.3

Addition 4.5.3

Address specification 13.1, 13.5

Aggregate 3.6.3, 4.3, 4.4, 4.7

Aggregate notation 4.3

Alignment clause 13.4

All 4.1.3

Allocator 3.8, 4.4, 4.8

Alternative 9.7.1

And operator 4.4, 4.5.1

And then control form 4.4, 4.5.1

Arbitrary selection 9.7.1

Argument 2.8

Arithmetic operator 4.5

Arithmetic operators C
Array aggregate 4.3.2

Array assignment 5.2.1

Array attribute 3.6.2

Array component 3.6

Array formal parameter 3.6.1

Array index 3.6

Array indexing 4.1.1

Array operations 3.8

Array type conversion 4.6

Array type definition 3.3, 3.6, 3.7, 12.1

Array_type_definition 3.2

Ascii 3.5.2

Assignment 5.1

Assignment statement 5.1, 5.2

Asynchronous termination 9.10

Attribute 3.3, 4.1, 4.1.4, 13.2

Attribute of a task 9.9

Attribute of an entry 9.9

Attributes of discrete types 3.5.5

Attributes of fixed point types 3.5.10

Attributes of floating point types 3.5.8

Base 2.4.1

Base attribute 3.3

Base parameter 14.3.5

Base type 3.3

Based integer 2.4.1

Based number 2.4, 2.4.1

Basic character set 2.

1

Basic loop 5.5

Binary mantissa 3.5.7

Bits attribute 3.5.10

Blank 14.3.3

Block 5.1, 5.6

Block identifier 5.1, 5.6

Body 3.9, 6.3, 7.1, 7.3, 10.2

Body stub 3.9, 10.2

Boolean expression 3.5.3

Boolean type 3.5.3

Boolean type input-output 14.3.6

Boolean value 3.5.3

Bound 3.5, 3.6, 3.6.1

Bounds of aggregate 4.3.2

Box 3.6, 12.1.2

Calendar 9.6

Calling conventions for input-output 14.2

Case statement 5.1, 5.4

Catenation 2.6, 3.6.3, 4.5.3

Change of representation 13.6

Character 2.1, 2.6

Character input-output 14.3.3

Character literal 2.5

Character string 2.6, 4.2

Character type 3.5.2

Choice 3.7.3, 4.3, 5.4

Clock 9.6

Close procedure 14.1.1

Closed alternative 9.7.1

Code statement 5.1, 13.8

Col subprogram 14.3.2

Collection 3.8

Collection size 13.2

Colon 2.10

Comment 2.7

Communication 9.5

Compatibility of constraint 3.3

Compatibility of fixed point constraints 3.5.9

Compatible discriminant constraint 3.7.2

Compatible index constraint 3.6.1

Compatible range constraint 3.5

Compilation 10.1

Compilation order 10.3

Compilation time 4.9

Compilation unit 10, 10.1

MIL-STD-1815
10 December 1980

Compiler commands 10.4

Component 3.6, 3.7, 4.1

Component association 4.3

Component declaration 3.7

Component list 3.7, 3.7.3

Component subtype 3.6

Composite object 3.6, 3.7

Composite type 3.3, 3.6, 3.7

Composite value 3.3

Compound statement 5.1

Compound symbol 2.2

Condition 5.3, 5.5, 5.7, 9.7.1

Conditional compilation 10.6

Conditional entry call 9.7, 9.7.2

Configuration 13.7

Conjunction 4.5.1

Constant 3.2

Constant declaration 3.2

Constrained array 3.6

Constraint 3.3

Constraint compatibility 3.5.7

Constraint error 3.5.4, 3.5.5, 3.5.6

Constraint_error exception 3.3, 3.6.1, 3.7, 3.7.2,

4.1.1, 4.1.2, 4.1.3, 4.3, 4.5.1,

4.5.6, 4.6, 4.7, 5.1, 5.2.1, 5.8, 6.1,

6.4.1, 8.5, 9.5, 11.1, 12.3.1,

12.3.2, 12.3.3, 12.3.4, 12.3.5,

12.3.6, 14.3.5

Constraints on parameters 6.4.1

Context 4.3.2

Context specification 1 0.

1

Control character 2.2, 2.6

Control form 4.5, 4.5.1

Count attribute 9.9

Create procedure 14.1.1

Creation of object 4.8

Current column 14.3.2

Current line 14.3.2

Current read position 14.1.2

Current size 14.1.2

Current time 9.6

Current write position 14.1.2

Current_input function 14.3.1

Current_output function 14.3.1

Data_error exception 14.1.2, 14.3.4

Decimal digits 3.5.7

Decimal number 2.4

Declaration 3.1, 3.9

Declarative item 3.9, 7.1

Declarative part 3.9, 5.6, 6.3, 7.1, 9.1

Declarative part of a block 5.6

Default actual parameter 6.4.2

Default initial value 3.7

Default input file 14.3

Default output file 14.3

Default parameter value 6.1

Deferred constant 7.4

Delay alternative 9.7.3

Delay statement 5.1, 9.6, 9.7.1, 9.7.3

Delete procedure 14.1.1

Delimiter 2.2

Delta 3.5.9

Delta attribute 3.5.10

Dependence between units 10.1.1

Dependence relation 10.1.1

Dependent task 9.4

Derived subprogram 3.4

Derived type 3.4

Derived type conversion 4.6

Derived type definition 3.3, 3.4

Designator 6.1

Device^error exception 14.1.2

Digit 2.1, 2.3, 2.4, 2.4.1

Digits 3.5.7

Digits attribute 3.5.8

Direct visibility 8.3

Discrete range 3.6, 3.6.1, 3.7.3, 4.1.2, 5.5, 9.5

Discrete type 3.5, 3.5.5

Discriminant 3.3, 3.7.1

Discriminant constraint 3.3, 3.7.2

Discriminant declaration 3.7, 3.7.1

Discriminant part 3.3, 3.7, 3.7.1, 3.8

Discriminant specification 3.7.2

Discriminant value 3.7.1

Discriminant_check 11.7

Discriminant__part 12.1

Division 4.5.5

Division operator 4.5.5

Division_check 11.7

Double quote 2.6

Duration 9.6

Dynamic array 3.6.1, 3.7.1

Dynamic association of handlers with exceptions

11.4

Dynamic constraint 3.3

Elaboration 3.1, 3.9

Elaboration of an iteration clause 5.5

Elaboration of context 10.1

Elaboration of library units 10.5

Elaboration of task body 9.1

Elaboration of task specification 9.1

Elaboration of type definition 3.3

Elaboration order 10.5

Else part of select 9.7.1, 9.7.2

Emax attribute 3.5.8

Emin attribute 3.5.8

Encapsulated data type 7.4.2

End position 14.1.2

End_error exception 14.1.2

End_of_file operation 14.1.2

End_of__line subprogram 14.3.2

Entity 3.1

Entry 9.5

Entry address 13.5.1

Entry call 5.1, 9.5, 9.7.2, 9.7.3

Entry declaration 9.1, 9.5

MIL-STD-1815
10 December 1980

Entry family 9.5

Entry queue 9.5

Entry representation specification 13.1

Enumeration literal 3.5.1, 4.2

Enumeration type 3.5.1

Enumeration type declaration 3.5.1

Enumeration type definition 3.3, 3.5.1

Enumeration type input-output 14.3.7

Enumeration type representation 13.1, 13.3

Enumeration_io package 14.3.7

Epsilon attribute 3.5.8

Equality 4.5.2

Equality operator 4.5.2

Equivalent subprogram specifications 6.6

Error bound 3.5.6, 3.5.9

Exception 11, 11.1

Exception choice 11.2

Exception declaration 11.1

Exception during elaboration 11.4.2

Exception handler 5.6, 6.3, 7.1, 9.1, 11.2

Exception in declarative part 9.3

Exception in task activation 9.3

Exception name 11.2

Exception raised in communicating tasks 11.5

Exception raised in declarations 11.4.2

Exception raised in statements 11.4.1

Exclamation mark 2.10

Exclusive disjunction 4.5.1

Exit statement 5.1, 5.7

Exponent 2.4, 2.4.1, 3.5.7

Exponent part 2.4

Exponentiating operator 4.4, 4.5, 4.5.6

Exponentiation 4.5.6

Expression 2.8, 3.2, 4.4

Expression evaluation 4.5

Extended__digit 2.4.

1

External file 14.1

Factor 4.4

Failure exception 11.6

False 3.5.3

Family of entries 9.5

File layout 14.3.2

File line length 14.3.2

File type 14.1

First attribute 3.5, 3.6.2

Fixed point constraint 3.5.6, 3.5.9

Fixed point input-output 14.3.5

Fixed point number 3.5.9

Fixed point type 3.5.9

Fixed_io package 14.3.5

Float type 3.5.7

Float_io package 14.3.5

Floating point constraint 3.5.6, 3.5.7

Floating point input-output 14.3.5

Floating point number 3.5.7

Floating point type 3.5.7

For loop 5.5

Formal parameter n
1, b.4, 12.3

Formal part 6.1, 9.5

Function 6, 6.1, 6.5

Function body 6.3

Function call 4.1, 4*4, 6.4

Function declaration 6.1

Function designator 6.1

Function specification 6.1

Function subprogram 6.5

Generic actual parameter 12.3

Generic association 12.3

Generic body 12.2

Generic declaration 1 2.

1

Generic formal parameter 12.1

Generic formal subprogram 1 2.1 .3

Generic formal type 12.1.2

Generic function 12.1

Generic instantiation 12

Generic instantiations 12.3

Generic package 12.1

Generic package declaration 7.1, 12.1

Generic package instantiation 12.3

Generic package instantiation 7.1

Generic parameter 12.1

Generic part 12.1

Generic procedure 12.1

Generic program unit 12

Generic program units 10.3

Generic subprogram 12.1

Generic subprogram declaration 6.1, 12.1

Generic subprogram instantiation 6.1, 12.3

Generic type definition 12.1, 12.1.2

Get procedure 14.3

Get_string function 14.3.3

Global 8.3

Global variable 8.3

Goto statement 5.1, 5.9

Handling an exception 1

1

Hidden 8.3

Hidden entity 8.2

Hide 8.3

Hiding a declaration 6.6

Hiding a subprogram 6.6

Identifier 2.3, 2.8, 4.1

Identifier list 3.2, 3.7, 3.7.1

Identity 4.1, 4.5.4

If statement 5.1, 5.3

Image attribute A
Implementation defined pragma F

Implicit conversion 3.5.4, 3.5.6

In membership test 4.4

In mode 6.1

In out mode 6.1

In out parameter 6.2

In parameter 6.2

In file 14.1

Inclusive disjunction 4.5.1

MIL-STD-1815

10 December 1980

Incomplete type declaration 3.8
Incomplete type definition 3.3

Index 3.6

Index bound 3.7

Index constraint 3.6, 3.6.1, 3.7.1

Index range 3.6

Index value 3.6, 3.6.1

lndex_check 11,7

Indexed component 4.1, 4.1,1

Indexing 3.6.1

Inequality 4.5.2

Inherited 3.4

Initial value 3.2

Initialization 3.2, 6.1

Inline pragma 6.3, 10.3, B
Inline subprogram 6.3

lnout_file 14.1

Input-output package 14.2

Instance 12

Integer 2.4, 2.4.1

Integer input-output 14.3.5

Integer literal 2.4

Integer type 3.5.4

Integer type definition 3.3

lnteger_io package 14.3.5

lnteger_type_definition 3.5.4

Interface pragma 13.9

Interface to other languages 13.9
Interrupt 13.5.1

Interrupt entry 13.5.1

Interval overflow 4.5.8

Introduce an identifier 3.1, 8.2
ls_open function 14.1.1

Item parameter 14.3

Iteration clause 5.5

Label 5.1

Label declaration 5.1

Language defined pragma B
Large attribute 3.5.8, 3.5.10
Last attribute 3.5, 3.6.2

Last operation 14.1.2

Layout_error exception 14.3.2
Length attribute 3.6.2

Length specification 13.1, 13.2
Letter 2.3, 2.4.1

Letter or digit 2.3

Lexical unit 2.2

Library file 10.4

Library unit 10.1, 10.1.1, 10.5
Limited generic formal part 12.1.2
Limited private type 7.4.2

Line length 14.3.2

Line marks 14.3.3

Line subprogram 14.3.2

Line_length subprogram 14.3.2

Literal 2.4, 3.2, 4.2, 4.4

Literal expression 4.10
Local 8.3

Location 13.4

Logical negation 4.1, 4.5.4

Logical operator 4.5, 4.5.1

Long_float type 3.5.7

Loop 5.5

Loop identifier 5.1, 5.5

Loop parameter 5.5

Loop statement 5.1, 5.5

Low level input-output 14.6

Low_level__io standard package 14.6
Lower bound 3.5

Lower case letter 2.1, 2.3

Machine code address 13.5

Machine code insertion 13.8

Machine dependent constant 13.7

Machine_emax 1 3.7.

1

Machine_emin 13.7.1

Machine_mantissa 13.7.1

Machine__overflows 13.7.1

Machine_radix 13.7.1

Machine_rounds 13.7.1

Main program 10.1

Mantissa 3.5.7

Mantissa attribute 3.5.8

Mapping between types 13.1

Matching rules for general formal subprograms
12.3.6

Matching rules for generic derived types 12.3.7
Matching rules for generic formal access types

12.3.5

Matching rules for generic formal array types
12.3.4

Matching rules for generic formal objects 12.3.1
Matching rules for generic formal private types

12.3.2

Matching rules for generic formal scalar types

12.3.3

Membership operator 4.5.2

Membership test 4.5

Minus sign 2.4, 4.5.4

Mod operator 4.5.5

Mode 6.1, 6.2

Model interval 4.5.8

Model number 3.5.6, 3.5.7, 3.5.9

Modulus 4.5.5

Multi-dimensional array 3.6

Multiplication 4.5.5

Multiplying operator 4.4, 4.5, 4.5.5

Name 3.1, 4.1, 4.1.2, 4.4

Name function 14.1.1

Name of numeric literal 3.2

Name resolution 8.4

Name_error exception 14.1.1

Named component 4.3

Named parameter 6.4

Named parameter association 6.4

Natural subtype 3.6.3

MIL-STD-1815
10 December 1980

Negation 4.1, 4.5.4

New_line subprogram 14.3.2

Next_read operation 14.1.2

Next_write operation 14.1.2

Not 4.5.4

Not in membership test 4.4

Not operator 4.4

Null 4.2

Null access value 3.8

Null array 3.6.1

Null index range 3.6.1

Null range 3.5, 3.6.1

Null record 3.7

Null slice 4.1.2

Null statement 5.1

Number 2.4

Number declaration 3.2

Numeric literal 2.4, 3.2, 4.2, 4.10

Numeric operation 4.5

Numeric type 3.5

Numeric type conversion 4.6

Numeric type input-output 14.3.5

Numeric types 3.5

Numeric _error 11.1

Numeric error exception 3.5.8, 4.5.3, 4.5.4,

4.5.5, 4.5.6, 4.5.7, 4.5.8, 11.1,

11.7

Object 3.2

Object address 13.5

Object declaration 3.2

Object name 3.2

Open alternative 9.7.1

Open procedure 14.1.1

Operator 4.5

Operator declaration 6.7

Operator symbol 4.1, 4.1.3, 6.1

Optimization 10.3, 11.8

Optimization and exceptions 11.8

Or else control form 4.4, 4.5.1

Or operator 4.4, 4.5.1

Order of elaboration 10.5

Order of evaluation 5.2, 11.8

Ordering operator 4.5.2

Others 3.7.3, 11.2

Out mode 6.1

Out parameter 6.2

Out_file 14.1

Overflow 3.5.8, 4.6

Overfiow_check 11.7

Overloaded aggregate 4.3

Overloaded definition 3.4

Overloaded literal 3.4, 3.5.1, 4.7

Overloading a subprogram 6.6

Overloading an operator 6.7

Overloading resolution 8.4

Own variable 7.3

Pack pragma 13.1

Package 7

Package body 3.9, 7.1, 7.3, 10.1

Package declaration 3.9, 7.1, 7.2, 10.1

Package identifier 7.1

Package specification 7.1, 7.2, 12.1

Package standard 10.1.1, C
Package structure 7.1

Package visible part 7.2

Parameter 6.1, 6.2

Parameter association 6.4, 6.4.1

Parameter declaration 6.1, 12.1

Parameter declaration in generic part 12.1.1

Parameter name 6.2

Parameter type 6.1

Parent type 3.3, 3.4

Parent unit 10.2

Percent character 2.10

Plus sign 2.4, 4.5.4

Pos attribute 3.5.5

Position number 3.5

Positional component 4.3

Positional parameter 6.4

Positional parameter association 6.4

Positional record aggregate 4.3.1, 4.3.2

Pragma 2.8

Pragma inline 6.3, 10.3

Pragma priority 9.8

Precedence 4.5

Precision 3.5.6

Pred attribute 3.5.5

Predefined environment 8.6

Predefined operation C
Predefined operator 4.5

Predefined operators C
Predefined type C
Primary 4.4

Priority 9.8

Priority attribute 9.9

Private part 7.2, 7.4

Private type 3.3, 7.4.1

Private type definition 3.3, 7.4, 12.1

Procedure 6, 6.1

Procedure body 6.3

Procedure call 5.1, 6.4

Procedure specification 6.1

Processing resources 9.8

Program 10

Program component 3.9

Program library 10.1, 10.4

Program optimization 10.6

Program unit 6, 7, 9

Propagation of exception 11.2, 11.4.1, 11.4.2

11.5

Put procedure 14.3

Qualification 3.5.1

Qualified expression 4.4, 4.7

Raise an exception 1 1.3

MIL-STD-1815
10 December 1980

Raise statement 5.1, 11.3

Raising an exception 1

1

Range 3.5, 3.6, 4.4

Range attribute 3.6.2

Range constraint 3.3, 3.5, 3.5.7, 3.5.9, 3.6

Range_check 11.7

Range_constraint 3.5.4

Read operation 14.1.2

Real literal 2.4

Real type 3.5, 3.5.6

Real type definition 3.3, 3.5.6

Real value 3.5.6

Receive_control predefined procedure 14.6

Recompilation 10.3

Record 3.7

Record aggregate 4.3.1

Record component 3.7

Record discriminant 3.7.1

Record object 3.7

Record storage 13.4

Record type 3.7

Record type definition 3.3, 3.7

Record type representation 13.1, 13.4

Record value 3.3, 3.7, 3.7.1

Recursion 3.3, 6.1

Recursive procedure 6.1

Redeclaration rules 8.2

Relation 4.4

Relation operator 4.5.2

Relational expression 4.4

Relational operator 4.4, 4.5, 4.5.2

Relative precision 3.5.7

Rem operator 4.5.5

Remainder 4.5.5

Renaming 8.5

Renaming declaration 8.5

Rendezvous 9.5

Representation attribute 13.7

Representation attributes of real type 13.7.1

Representation specification 3.9, 7.1, 9.1, 13.1

Reserved word 2.9

Reset_read operation 14.1.2

Reset_write operation 14.1.2

Result type 6.1

Return statement 5.1, 5.8

Reverse 5.5

Satisfy a discriminant constraint 3.7.2

Satisfy a fixed point constraint 3.5.9

Satisfy a floating point constraint 3.5.7

Satisfy a range constraint 3.5

Satisfy an index constraint 3.6.1

Scalar type 3.5

Scheduling 9.8

Scope 8.2

Scope of a declaration 8.1

Scope of declaration 8.2

Scope rules 8, 8.1, 8.2

Select alternative 9.7.1

Select error exception 11.1

Select statement 5.1, 9.7

Select_error 11.1

Select_error exception 9.7.1

Selected component 4.1, 4.1.3

Selective wait 9.7, 9.7.1

Send_control predefined procedure 14.6

Separate compilation 10.1

Sequence of statements 5.1, 5.3

Set_col subprogram 14.3.2

SetJnput function 14.3.1

Set_line_length subprogram 14.3.2

Set output function 14.3.1

Set read operation 14.1.2

Set_write operation 14.1.2

Shared variable 9.11

Shared_variable_update procedure 9.11

Short circuit 4.5

Short circuit control form 4.5.1

Short__float type 3.5.7

Simple expression 3.7.3, 4.4

Simple statement 5.1

Simple__expre$sion 4.1.3

Single quote character 2.5

Size operation 14.1.2

Size specification 13.2

Skip_line subprogram 14.3.2

Slice 4.1, 4.1.2

Slicing 4.1.2

Small attribute 3.5.8

Space 2.1

Spacing convention 2.2

Special character 2.1

Standard input file 14.3

Standard output file 14.3

Standard package 10.1.1, C
Standard__input function 14.3.1

Standard output function 14.3.1

Statement 5, 5.1

Static expression 4.9, 10.6

Status_error exception 14.1.1

Storage unit 13.2

Storage_error 11.1

Storage_error exception 3.9, 4.8, 11.1, 13.2

Storage_size attribute 9.9

String 2.6, 3.6.3

String bracket 2.10

String input-output 14.3.3

String type 3.6.3

Subprogram 6, 6.1, 6.3

Subprogram body 3.9, 6, 6.3

Subprogram call 6.4

Subprogram declaration 6, 6.1

Subprogram identifier 6.1

Subprogram specification 6.1, 6.3, 8.5, 10.1,

10.2, 12.1

Subtraction 4.5.3

Subtype 3.3

Subtype declaration 3.3

MIL-STD-1815
10 December 1980

Subtype indication 3.2, 3.3, 3.4, 3.6, 3.7,

3.8, 4.4, 6.1, 12.3

Subunit 10.1, 10.2

Subunit of compilation unit 10.2

Succ attribute 3.5.5

Suppress pragma 11.7

Suppressing exceptions 11.7

Suspend execution 9.5, 9.6

Suspend task 9.5, 9.6, 9.7

Synchronization 9.5, 9.11

System package 13.7

Tabulation character 2.2

Task 9, 9.1, 9.2, 9.3

Task activation 9.3

Task body 3.9, 9.1

Task declaration 3.9, 9.1

Task execution 9.2, 9.3

Task object 9.1, 9.2

Task scheduling 9.8

Task specification 9.1

Task storage 13.2

Task termination 9.3, 9.4

Task type 9, 9.1, 9.2

Tasking_error 11.1

Tasking_error exception 9.3, 9.5, 9.10, 11

11.4, 11.5, 11.6

Template 12, 12.2

Term 4.4

Terminate alternative 9.7.1

Terminated attribute 9.9

Terminated task 9.3, 9.4

Termination 9.4

Text input-output 14.3

Text input-output primitives 14.4

Text_io package 14.3, 14.4

Time 9.6

Timed entry call 9.7, 9.7.3

Transliteration 2.10

True 3.5.3

Truncate operation 1 4. 1 .

2

Truth value 3.5.3

Type 3.1, 3.3

Type class 3.3

Type conversion 4.4, 4.6

Type declaration 3.3

Type definition 3.3

Type mark 3.3, 3.6, 4.6, 4.7, 8.5

Unary operator 4.1, 4.4, 4.5, 4.5.4

Unchecked storage deallocation 13.10.1

Unchecked type conversion 13.10.2

Unconstrained array 3.6

Unconstrained record type 3.7

Underscore 2.3, 2.4, 2.4.1

Universal fixed type 3.5.9, 4.5.5

Universal integer type 2.4, 3.2, 3.5.4, 4.10

Universal real type 2.4, 3.2, 3.5.6, 4.10

Upper bound 3.5

v. U.S GOVERNMENT PRINTING OFFICE: 1981-706-575:506

3.7.1, Upper case letter 2.1, 2.3

Urgency 9.8

Use clause 3.9, 8.4, 10.1

Use_error exception 1 4. 1 .

2

Val attribute 3.5.5

Value 3.2, 3.3, 3.7.1

Value attribute A
Variable 3.2, 4.1

Variable name 4.1

Variant 3.7.1, 3.7.3

Variant part 3.7, 3.7.1, 3.7.3

Variant record 3.7.1

Visibility of declaration 8.3

Visibility of identifier 8.3

Visibility rules 8, 8.1, 8.3

Visible 8.1

Visible part 7.2

Wait 9.7.1

While loop 5.5

Width parameter 14.3.4

With clause 10.1, 10.1.1

Write operation 1 4. 1 .

2

1, Xor operator 4.4, 4.5.1

STANDARDIZATION DOCU^EMT IMPROVEMENT PROPOSAL
|

INSTRUCTIONS: This form is provided to solicit beneficial comments which may improve this document and

enhance its use. DoD contractors, government activities, manufacturers, vendors, or other prospective users of

the document are invited to submit comments to the government. Fold on lines on reverse side, staple in corner,

and send to preparing activity. Attach any pertinent data which may be of use in improving this document. If

there are additional papers, attach to form and place both in an envelope addressed to preparing activity. A
response will be provided to the submitter, when name and address is provided, within 30 days indicating that

the 1426 was received and when any appropriate action on it will be completed.

NOTE: This form shall not be used to submit requests for waivers, deviations or clarification of specification

requirements on current contracts. Comments submitted on this form do not constitute or imply authorization

to waive any portion of the referenced documents) or to amend contractual requirements.

DOCUMENT IDENTIFIER (Number

)

AND TITLE

MIL-STD-1815, Dec 10, 1980, Ada Programming Language
NAME OF ORGANIZATION AND ADDRESS OF SUBMITTER

VENDOR USER MANUFACTURER

1. HAS ANY PART OF THE DOCUMENT CREATED PROBLEMS OR REQUIRED INTERPRETATION IN PROCUREMENT
USE? IS ANY PART OF IT TOO RIGID, RESTRICTIVE, LOOSE OR AMBIGUOUS? PLEASE EXPLAIN BELOW.

A. GIVE PARAGRAPH NUMBER AND WORDING

B. RECOMMENDED WORDING CHANGE

C. REASON FOR RECOMMENDED CHANGE(S)

2. REMARKS

SUBMITTED BY (Printed or typed name and address — Optional) TELEPHONE NO.

DATE

00 FORM
1426~

1 OCT 76 U
EDITION OF 1 JAN 72 WILL BE USED UNTIL EXHAUSTED.

FOLD

DEFENSE LOGISTICS AGENCY

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE $300

NO POSTAGE
NECESSARY
IF MAILEO

IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 4960 WASHINGTON D. C.

POSTAGE WILL BE PAID BY THE DEFENSE LOGISTICS AGENCY
10

ADA JOINT PROGRAM OFFICE (AJPO)

OUSD (R&E)
WASHINGTON, DC 20301

